Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Frontiers in Materials Année : 2018

Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide

Résumé

The quest for large and low-frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, and to seismic wave abatement. For this purpose, a plethora of complex architectures (including multiphase materials) and multiphysics approaches have been proposed in the past, often involving difficulties in their practical realization. To address the issue of proposing a material design that enables large band gaps using a simple configuration, in this study we propose an easy-to-manufacture design able to open large, low-frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stiffnesses produced by cavities in a monolithic material. The performance of the designed structure is evaluated by numerical simulations and confirmed by scanning laser Doppler vibrometer (SLDV) measurements on an isotropic polyvinyl chloride plate in which a square ring region of cross-like cavities is fabricated. The full wave field reconstruction clearly confirms the ability of even a limited number of unit cell rows of the proposed design to efficiently attenuate Lamb waves. In addition, numerical simulations show that the structure allows to shift the central frequency of the BG through geometrical modifications. The design may be of interest for applications in which large BGs at low frequencies are required
Fichier principal
Vignette du fichier
fmats-05-00008.pdf (4.23 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-01917981 , version 1 (24-05-2024)

Licence

Identifiants

Citer

M. Miniaci, Matteo Mazzotti, Maciej Radzieński, Nesrine Kherraz, Pawel Kudela, et al.. Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide. Frontiers in Materials, 2018, 5, pp.8. ⟨10.3389/fmats.2018.00008⟩. ⟨hal-01917981⟩
39 Consultations
2 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More