Some Sharp Circular and Hyperbolic Bounds of exp(x^2) with Applications - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Some Sharp Circular and Hyperbolic Bounds of exp(x^2) with Applications

Résumé

This article is devoted to obtain some sharp lower and upper bounds for exp(x^2) in the interval (− π /2 , π/ 2). The bounds are of the type [(a+f (x))/(a+1)]^b, where f (x) is cosine or hyperbolic cosine. The results are then used to obtain and refine some known Cusa-Huygens type inequalities. In particular, new simple proof of Cusa-Huygens type inequalities is presented as an application. For other interesting applications of the main results, sharp bounds of the truncated Gaussian sine integral and error function are established. They can be useful in probability theory.
Fichier principal
Vignette du fichier
exp(x^2)-6.pdf (242.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01915086 , version 1 (07-11-2018)
hal-01915086 , version 2 (15-11-2018)
hal-01915086 , version 3 (22-12-2018)
hal-01915086 , version 4 (24-03-2020)

Identifiants

  • HAL Id : hal-01915086 , version 2

Citer

Yogesh J. Bagul, Christophe Chesneau. Some Sharp Circular and Hyperbolic Bounds of exp(x^2) with Applications. 2018. ⟨hal-01915086v2⟩
219 Consultations
324 Téléchargements

Partager

More