Une approche distribuée asynchrone pour la factorisation en matrices non-négatives - Application au démélange hyperspectral
Résumé
Le démélange d’images hyperspectrales est un exemple particulier du problème de factorisation en matrices non-négatives (NMF) qui consiste à identifier les signatures spectrales d’un milieu imagé ainsi que leurs proportions dans chacun des pixels. Toutefois, le nombre important de pixels composant ces images peut s’avérer contraignant en termes de mémoire ou de temps de calcul, ce qui peut motiver le développement de techniques d’estimation distribuées (entre plusieurs processeurs et/ou plusieurs machines). Dans cette perspective, nous proposons une approche distribuée du problème de démélange, basée sur de récentes avancées en optimisation distribuée asynchrone inspirées de l’algorithme proximal alternating linearized minimization (PALM). L’intérêt d’une estimation asynchrone par rapport à une procédure synchrone est illustré dans ce contexte sur des données synthétiques
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...