Unsupervised relation extraction from scientific texts using self-organizing maps - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Unsupervised relation extraction from scientific texts using self-organizing maps

Résumé

Scientific texts represent a rich source of unstructured knowledge. Extracting this knowledge in a supervised manner can become highly expensive in time and human resources. Moreover supervised models are domain- and language-dependent which make them hard to maintain and extend. Hence unsupervised methods have received a lot of attention from researchers in the fields of information extraction and data mining. In this paper, we present our experiments with self-organizing maps (SOMs) for the task of open relation extraction. We combine contextual features of different level (lemmas and parts-of-speech) to help the algorithm to automatically discover lexical and morphological patterns in the corpus. The evaluation results show that our model yields a better performance than the widely used K-means clustering algorithm with the same feature set.
Fichier principal
Vignette du fichier
manishina_19106.pdf (226.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01913664 , version 1 (06-11-2018)

Identifiants

  • HAL Id : hal-01913664 , version 1

Citer

Elena Manishina, Mouna Kamel, Cassia Trojahn dos Santos, Nathalie Aussenac-Gilles. Unsupervised relation extraction from scientific texts using self-organizing maps. 1er Atelier sur l' Extraction et la Modélisation de Connaissances à partir de textes scientifiques, associé à PFIA 2017 (EMC-Sci 2017), Jul 2017, Caen, France. pp.25-32. ⟨hal-01913664⟩
131 Consultations
295 Téléchargements

Partager

More