IRIT at e-Risk - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

IRIT at e-Risk

Résumé

In this paper, we present the method we developed when participating to the e-Risk pilot task. We use machine learning in order to solve the problem of early detection of depressive users in social media relying on various features that we detail in this paper. We submitted 4 models which differences are also detailed in this paper. Best results were obtained when using a combination of lexical and statistical features.

Mots clés

Fichier principal
Vignette du fichier
abdoumalam_19082.pdf (135.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01912779 , version 1 (05-11-2018)

Licence

Identifiants

  • HAL Id : hal-01912779 , version 1

Citer

Idriss Abdou Malam, Mohamed Arziki, Mohammed Nezar Bellazrak, Farah Benamara, Assafa El Kaidi, et al.. IRIT at e-Risk. 8th International Conference of the CLEF Association (CLEF 2017), Sep 2017, Dublin, Ireland. pp.1-7. ⟨hal-01912779⟩
181 Consultations
99 Téléchargements

Partager

More