Quasi-Regression Monte-Carlo scheme for semi-linear PDEs and BSDEs with large scale parallelization on GPUs - Archive ouverte HAL
Article Dans Une Revue Archives of Computational Methods in Engineering Année : 2019

Quasi-Regression Monte-Carlo scheme for semi-linear PDEs and BSDEs with large scale parallelization on GPUs

Résumé

In this article we design a novel quasi-regression Monte Carlo algorithm in order to approximate the solution of discrete time backward stochastic differential equations (BSDEs), and we analyze the convergence of the proposed method. The algorithm also approximates the solution to the related semi-linear parabolic partial differential equation (PDE) obtained through the well known Feynman-Kac representation. For the sake of enriching the algorithm with high order convergence a weighted approximation of the solution is computed and appropriate conditions on the parameters of the method are inferred. With the challenge of tackling problems in high dimensions we propose suitable projections of the solution and efficient parallelizations of the algorithm taking advantage of powerful many core processors such as graphics processing units (GPUs).
Fichier principal
Vignette du fichier
QuasiRegressionBSDE_GPU_HAL_version.pdf (827.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01904457 , version 1 (25-10-2018)

Identifiants

Citer

Emmanuel Gobet, José Germán López-Salas, Carlos Vázquez. Quasi-Regression Monte-Carlo scheme for semi-linear PDEs and BSDEs with large scale parallelization on GPUs. Archives of Computational Methods in Engineering, 2019, 27 (3), pp.889-921. ⟨10.1007/s11831-019-09335-x⟩. ⟨hal-01904457⟩
107 Consultations
224 Téléchargements

Altmetric

Partager

More