Non-archimedean hyperbolicity and applications - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Non-archimedean hyperbolicity and applications

Résumé

Inspired by the work of Cherry, we introduce and study a new notion of Brody hyperbolicity for rigid analytic varieties over a non-archimedean field K of characteristic zero. We use this notion of hyperbolicity to show the following algebraic statement: if a projective variety admits a non-constant morphism from an abelian variety, then so does any specialization of it. As an application of this result, we show that the moduli space of abelian varieties is K-analytically Brody hyperbolic in equal characteristic 0. These two results are predicted by the Green-Griffiths-Lang conjecture on hyperbolic varieties and its natural analogues for non-archimedean hyperbolicity. Finally, we use Scholze's uniformization theorem to prove that the aforementioned moduli space satisfies a non-archimedean analogue of the "Theorem of the Fixed Part" in mixed characteristic.
Fichier principal
Vignette du fichier
p_adic_6.pdf (406.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01901289 , version 1 (22-10-2018)

Identifiants

  • HAL Id : hal-01901289 , version 1

Citer

Ariyan Javanpeykar, Alberto Vezzani. Non-archimedean hyperbolicity and applications. 2018. ⟨hal-01901289⟩
70 Consultations
161 Téléchargements

Partager

More