Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Applied Physics Année : 2017

Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet

Goran Sretenović
  • Fonction : Auteur
Olivier Guaitella
Ana Sobota
Ivan Krstić
  • Fonction : Auteur
Vesna Kovačević
  • Fonction : Auteur
Bratislav Obradović
  • Fonction : Auteur
Milorad Kuraica
  • Fonction : Auteur

Résumé

The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave decreases as it approaches to the exit of the tube. The values obtained under presented experimental conditions are in the range of 5–11 kV/cm. It was found that the increase in gas flow above 1500 SCCM could induce substantial changes in the discharge operation. This is reflected through the formation of the brighter discharge region and appearance of the electric field maxima. Furthermore, using the measured values of the electric field strength in the streamer head, it was possible to estimate electron densities in the streamer channel. Maximal density of 41011cm3 is obtained in the vicinity of the grounded ring electrode. Similar behaviors of the electron density distributions to the distributions of the electric field strength are found under the studied experimental conditions.
Fichier non déposé

Dates et versions

hal-01898494 , version 1 (18-10-2018)

Identifiants

Citer

Goran Sretenović, Olivier Guaitella, Ana Sobota, Ivan Krstić, Vesna Kovačević, et al.. Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet. Journal of Applied Physics, 2017, 121 (12), ⟨10.1063/1.4979310⟩. ⟨hal-01898494⟩
40 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More