Simultaneous super-resolution and segmentation using a generative adversarial network: Application to neonatal brain MRI - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Simultaneous super-resolution and segmentation using a generative adversarial network: Application to neonatal brain MRI

Résumé

The analysis of clinical neonatal brain MRI remains challenging due to low anisotropic resolution of the data. In most pipelines, images are first re-sampled using interpolation or single image super-resolution techniques and then segmented using (semi-)automated approaches. Image reconstruction and segmentation are then performed separately. In this paper, we propose an end-to-end generative adversarial network for simultaneous high-resolution reconstruction and segmentation of brain MRI data. This joint approach is first assessed on the simulated low-resolution images of the high-resolution neonatal dHCP dataset. Then, the learned model is used to enhance and segment real clinical low-resolution images. Results demonstrate the potential of our proposed method with respect to practical medical applications.
Fichier principal
Vignette du fichier
Pham ISBI 2019.pdf (814.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01895163 , version 1 (14-01-2019)

Identifiants

Citer

Chi-Hieu Pham, Carlos Tor-Díez, Hélène Meunier, Nathalie Bednarek, Ronan Fablet, et al.. Simultaneous super-resolution and segmentation using a generative adversarial network: Application to neonatal brain MRI. International Symposium on Biomedical Imaging (ISBI), 2019, Venice, Italy. pp.991-994, ⟨10.1109/ISBI.2019.8759255⟩. ⟨hal-01895163⟩
540 Consultations
688 Téléchargements

Altmetric

Partager

More