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3 Université de Reims Champagne-Ardenne, CReSTIC, Reims, France
4 IMT Atlantique, Lab-STICC UMR CNRS 6285, Brest, France

ABSTRACT

The analysis of clinical neonatal brain MRI remains chal-
lenging due to low anisotropic resolution of the data. In most
pipelines, images are first re-sampled using interpolation or
single image super-resolution techniques and then segmented
using (semi-)automated approaches. Image reconstruction
and segmentation are then performed separately. In this pa-
per, we propose an end-to-end generative adversarial network
for simultaneous high-resolution reconstruction and segmen-
tation of brain MRI data. This joint approach is first assessed
on the simulated low-resolution images of the high-resolution
neonatal dHCP dataset. Then, the learned model is used to
enhance and segment real clinical low-resolution images. Re-
sults demonstrate the potential of our proposed method with
respect to practical medical applications.

Index Terms— Super-resolution, segmentation, 3D gen-
erative adversarial networks, neonatal brain MRI.

1. INTRODUCTION

Long-term studies of the outcome of prematurely born in-
fants have clearly documented that the majority of such in-
fants may have significant motor, cognitive, and behavioral
deficits. However, there is a limited understanding of the
nature of the cerebral abnormality underlying these adverse
neurologic outcomes. Magnetic Resonance Imaging (MRI)
provides unique opportunities for in vivo investigation of the
early developing human brain. However, the analysis of clin-
ical neonatal brain MRI data remains challenging mainly due
to low anisotropic image resolution. Improving morpholog-
ical data processing such as image resolution enhancement
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and brain segmentation, is a key-point to provide robust mor-
phometry analysis tools to the community.

One of the first key components of the processing pipeline
of clinical MRI data is the upsampling image estimation.
Super-resolution (SR) is a post-processing technique that
aims at enhancing the resolution of an imaging system [1].
SR is a challenging inverse problem; in particular the es-
timation of texture and details remains difficult. Recently,
supervised deep learning-based techniques have shown great
improvement over model-based approaches. In this context,
applying 3D convolutional neural networks (CNNs) yields
promising results for MRI data [2, 3]. However, the use of
`2-norm loss leads to smooth, unrealistic high resolution im-
ages [4, 5]. Generative adversarial networks (GANs) have
thus been proposed to estimate textured and sharper images
[5, 6].

Once the high resolution image reconstruction is per-
formed, the implementation of an automatic segmentation
robust approach is crucial for fine brain structure analysis [7].
Segmenting thin structures such as the neonatal cortical gray
matter remains difficult and the segmentation step is always
considered separately from image reconstruction.

In this article, we propose an end-to-end GAN-based
approach which can generate both the perceptually super-
resolved image and a cortical segmentation map from a
single low-resolution (LR) image. The proposed approach
called SegSRGAN is both assessed on simulated data and
real clinical data.

2. METHOD

In this work, we focus on joint reconstruction and cortical seg-
mentation of clinical LR neonatal brain MRI data. Section 2.1
describes the mathematical formulation of SR and Section 2.2
focuses on image segmentation. The proposed joint method
is presented in Section 2.3, while technical details on the in-
duced network architecture are provided in Section 2.4. Ex-
periments on simulated and clinical MRI data are described
and discussed in Section 3.



2.1. Formulation of single image super-resolution

The objective of single image SR is to estimate a high-
resolution (HR) image X ∈ Rm from one observed LR image
Y ∈ Rn. SR problem can be formulated using the following
linear observation model:

Y = H↓BX +N = ΘX +N (1)

where N is the additive noise, B ∈ Rm×m is a blur matrix
(depending on the point spread function),H↓ : Rm → Rn is a
downsampling decimation and Θ = H↓B ∈ Rn×m(m > n).

A popular approach that solves SR problem defines the
matrix Θ−1 as the combination of a restoration operator F ∈
Rm×m and an upscaling interpolation operator S↑ : Rn →
Rm computing the interpolated LR image Z ∈ Rm (Z =
S↑Y). In the context of supervised learning, given a set of
HR images Xi and their corresponding LR images Yi, the
restoration operator F can be estimated by minimizing the
following loss function: F̂ = arg minF

∑
i ‖Xi − F (Zi)‖22.

However, it is known that the use of `2-norm may lead
to oversmoothing high resolution images. In order to provide
realistic HR images, perceptual loss function [4] have been
used in a GAN [5]. This is a paradigm shift since it is no
longer a question of minimizing only the reconstruction error
but of estimating a realistic image, i.e. a high resolution im-
age that corresponds to the observation model with realistic
texture details.

A perceptual loss can be formulated as the weighted sum
of the content loss (based, e.g., on pixel-wise mean squared
error loss) and an adversarial loss component. In GAN-based
approaches, the purpose is to train a generating network G
that estimates for a given LR input image a corresponding HR
image. The goal of the discriminator network D is to classify
real and simulated HR images.

2.2. Formulation of image segmentation

In this work, image segmentation is viewed as a supervised re-
gression problem: SX = R (X) where R denotes a non-linear
mapping from the upscaled image X to the segmentation map
SX. Similarly to the SR problem, assuming that we have a
set of images Xi and corresponding segmentation maps SXi ,
a general approach for solving this segmentation problem is
to find the mapping R by minimizing the following loss func-
tion: R̂ = arg minR

∑
i ‖SXi

− R(Xi)‖22. Unlike the SR
problem, the use of `2-norm is less critical as it is expected to
estimate smooth segmentation maps.

2.3. Joint mapping by generative adversarial networks

We propose the use of a GAN-based approach to estimate
jointly a HR image and its corresponding segmentation map
from one LR image. To this end, a convolution-based gen-
erator network G takes as input an interpolated LR image Z

and computes a HR image X̂ and a segmentation map ŜX by
minimizing the following reconstruction loss:

Lrec = min
G

∑
i

ρ ((X,SX)i −G(Zi)) (2)

where (X,SX)i are concatenated along the feature channel.
In this work, we use a robust loss as Charbonnier loss [8]:
ρ(x) =

√
x2 + ν2 where ν is set to 10−3.

The discriminator network D attempts to distinguish the
real data (X,SX) and the generated ones G (Z). The game
between the generator G and the discriminator D is usually
modeled with a minimax objective. However, using such loss
function, GAN may be unstable or can suffer from mode col-
lapse during training. Thus, in this work, we propose to use
Wasserstein GAN loss described in [9]:

Ladv = min
G

max
D

EX∼PX,SX∼PSX
[D((X,SX))]−

EZ∼PZ [D(G (Z))] + λgpEX̂S[(‖ (∇X̂SD(X̂S) ‖2 −1)2]
(3)

where X̂S is the interpolation of the true data and the gener-
ated one as (1−ε)(X,SX)+εG (Z), ε ∼ U [0, 1] (uniform dis-
tribution). λgp and ∇ denote the gradient penalty coefficient
and gradient operator, respectively. The images X, SX and Z
are extracted randomly from the data distributions of HR im-
ages PX, HR segmentation maps PSX and LR images PZ. The
termsD((X,SX)),D(G (Z)) andD(X̂S) are the responses of
the discriminator with respect to the real data, the generated
data and the interpolated data, respectively. The full objective
function is expressed as: Ltotal = Lrec + λadvLadv where
λadv is a trade-off parameter between reconstruction loss and
adversarial loss.

2.4. Architecture of generator and discriminator net-
works

The generator network is a convolution-based network with
residual blocks. Let Ci

j-Sk be a block consisting of the fol-
lowing layers: a convolution layer of j filters of size i3 with
stride of k, an instance normalization layer (InsNorm) [10]
and a rectified linear unit (ReLU). Rk denotes a residual
block as Conv-InsNorm-ReLU-Conv-InsNorm that contains
33 convolution layers with k filters. Uk denotes layers as
Upsampling-Conv-InsNorm-ReLU layer with k filters of 33

and stride of 1. After the last layer, we apply a sigmoid activa-
tion for the channel of segmentation map and an element-wise
sum of the intensity channel and the interpolated LR image.
The generator architecture is: C7

16-S1, C3
32-S2, C3

64-S2, R64,
R64, R64, R64, R64, R64, U32, U16, C7

2 -S1.
The discriminator network contains five convolutional

layers with an increasing number of filter kernels, increasing
by a factor of 2 from 32 to 512 kernels. Let Ck be a block
consisting of the following layers: a convolution layer of k
filters of size 43 with stride of 2 and a Leaky ReLU with a



negative slope of 0.01. The last layer C2
1 is a 23 convolution

filter with stride of 1. No activation layer is used after the last
layer. The discriminator consists of C32, C64, C128, C256,
C512, C2

1 .

3. EXPERIMENTS AND RESULTS

3.1. Datasets and network training

To assess the ability to reconstruct HR volume and segment
the cerebral cortex , we applied the proposed method on T2-
weighted (T2w) MR images of the developing Human Con-
nectome Project1 (dHCP). 40 T2w images were acquired us-
ing a 3T Achieva scanner with a 0.5 × 0.5 × 0.5 mm3 reso-
lution with TR = 12 000 ms TE = 156 ms, respectively. 30
images were used for training networks, whereas the other 10
were used as testing images. As in [1], LR images were gen-
erated by using a Gaussian blur with the full-width-at-half-
maximum (FWHM) set to slice thickness before a downsam-
pling step to obtain a 0.5× 0.5× 1.5 mm3 resolution.

We have also applied the proposed method onto clini-
cal neonatal MRI data acquired in the neonatology service
of Reims Hospital. These LR images have a resolution of
0.446× 0.446× 3 mm3. 40 HR images of the dataset dHCP
were filtered and downsampled as in [1] in order to generate
LR images with a same resolution as clinical data. The net-
work was trained using 40 pairs of simulated data and then
applied to real LR images for visual evaluations. All data had
bias correction and for network training, they were normal-
ized between 0 and 1. No subjects nor image patches appear
twice in the different subsets.

The 3D network was trained over 200 epochs with batch
size of 16, using Adam method with learning rate of 0.0001
and updates the discriminator 5 times before training the gen-
erator as in [9]. The parameters λadv and λgp were set to
0.001 and 10 respectively. The training patch size is 643.
At test time, the whole HR image and segmentation volume
were reconstructed by the weighted predictions of patches. A
thresholding at 0.5 has been performed to obtain binary seg-
mentation maps.

3.2. Results

Peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) have been used to evaluate the performance of
SR reconstructions. Table 1 provides a summary of quan-
titative evaluations for the following methods: cubic spline
interpolation, a 20-layers CNN-based SR approach (20L-
SRReCNN) [11] and our proposed SegSRGAN. It can be
seen that 20L-SRReCNN provides highest PSNRs as in [4, 5]
since this approach minimizes a `2-norm-based loss. How-
ever, while the two CNN-based approaches (20L-SRReCNN
and SegSRGAN) lead qualitatively to similar realistic results

1http://www.developingconnectome.org

Table 1. Quantitative evaluation of SR methods on dHCP
dataset.

Interpolation 20L-SRReCNN [11] SegSRGAN
PSNR 30.70 35.84 31.75
SSIM 0.9492 0.9739 0.9624

Table 2. Quantitative evaluation of segmentation methods on
dHCP dataset.

IMAPA [12] DrawEM [13] SegSRGAN
Dice (mean) 0.788 0.818 0.886
Dice (std. dev.) 0.061 0.014 0.011

on dHCP dataset (see Fig. 1), the proposed approach provides
the best reconstructed HR image on clinical data with better
contrast on cortical gray matter (see Fig. 2).

The Dice index is used to evaluate the cortical segmenta-
tion maps obtained by the following state-of-the-art methods:
iterative multi-atlas patch-based approach (IMAPA) [12],
DrawEM [13] and the proposed SegSRGAN. As in a typi-
cal clinical setting, the three methods have been applied on
interpolated images. Table 2 shows that quantitatively the
proposed approach lead to the best cortical segmentation re-
sults with significant improvement with respect to the two
other methods. Moreover, as mentioned in [12], the use of
IMAPA applied on original HR dHCP images leads to a mean
DICE of 0.887 (std. dev. of 0.011) that is very similar to the
results obtained with SegSRGAN (applied on interpolated
images). Results on real LR data (see Fig. 2) confirm the po-
tential of the proposed approach for fine analysis of clinical
neonatal brain MRI.

4. CONCLUSION

In this paper, we have presented a simultaneous super-
resolution and segmentation method for 3D brain MR images
using a generative adversarial network. Our experiments on
both simulated and clinical data have shown that better per-
formance can be achieved by this joint approach compared
to state-of-the-art techniques, opening up new perspectives in
the processing of clinical LR neonatal brain MRI data.
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