Comparison of traffic forecasting methods in urban and suburban context - Archive ouverte HAL Access content directly
Conference Papers Year : 2018

Comparison of traffic forecasting methods in urban and suburban context


In the context of Connected and Smart Cities, the need to predict short term traffic conditions has led to the development of a large variety of forecasting algorithms. In spite of various research efforts, there is however still no clear view of the requirements involved in network-wide traffic forecasting. In this paper, we study the ability of several state-of-the-art methods to forecast the traffic flow at each road segment. Some of the multivariate methods use the information of all sensors to predict traffic at a specific location, whereas some others rely on the selection of a suitable subset. In addition to classical methods, we also study the advantage of learning this subset by using a new variable selection algorithm based on time series graphical models and information theory. This method has already been successfully used in natural science applications with similar goals, but not in the traffic community. A contribution is to evaluate all these methods on two real-world datasets with different characteristics and to compare the forecasting ability of each method in both contexts. The first dataset describes the traffic flow in the city center of Lyon (France), which exhibits complex patterns due to the network structure and urban traffic dynamics. The second dataset describes inter-urban freeway traffic on the outskirts of the french city of Marseille. Experimental results validate the need for variable selection mechanisms and illustrate the complementarity of forecasting algorithms depending on the type of road and the forecasting horizon.
Fichier principal
Vignette du fichier
main.pdf (1.46 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01895136 , version 1 (14-10-2018)



Julien Salotti, Serge Fenet, Romain Billot, Nour-Eddin El Faouzi, Christine Solnon. Comparison of traffic forecasting methods in urban and suburban context. ICTAI 2018 : IEEE 30th International Conference on Tools with Artificial Intelligence, Nov 2018, Volos, Greece. pp.846-853, ⟨10.1109/ICTAI.2018.00132⟩. ⟨hal-01895136⟩
505 View
1166 Download



Gmail Facebook Twitter LinkedIn More