Predicting the Possibilistic Score of OWL Axioms through Support Vector Regression - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Predicting the Possibilistic Score of OWL Axioms through Support Vector Regression

Résumé

Within the context of ontology learning, we consider the problem of selecting candidate axioms through a suitable score. Focusing on subsumption axioms, this score is learned coupling support vector regression with a special similarity measure inspired by the Jaccard index and justified by semantic considerations. We show preliminary results obtained when the proposed methodology is applied to pairs of candidate OWL axioms, and compare them with an analogous inference procedure based on fuzzy membership induction.
Fichier principal
Vignette du fichier
MalchiodiPereiraTettamanzi2018sum.pdf (211.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01894495 , version 1 (12-10-2018)

Identifiants

  • HAL Id : hal-01894495 , version 1

Citer

Dario Malchiodi, Célia da Costa Pereira, Andrea G. B. Tettamanzi. Predicting the Possibilistic Score of OWL Axioms through Support Vector Regression. 12th International Conference on Scalable Uncertainty Management (SUM 2018), Oct 2018, Milan, Italy. pp.380-386. ⟨hal-01894495⟩
84 Consultations
142 Téléchargements

Partager

More