N

N

Predicting the Possibilistic Score of OWL Axioms
through Support Vector Regression
Dario Malchiodi, Célia da Costa Pereira, Andrea G. B. Tettamanzi

» To cite this version:

Dario Malchiodi, Célia da Costa Pereira, Andrea G. B. Tettamanzi. Predicting the Possibilistic
Score of OWL Axioms through Support Vector Regression. 12th International Conference on Scalable
Uncertainty Management (SUM 2018), Oct 2018, Milan, Italy. pp.380-386. hal-01894495

HAL Id: hal-01894495
https://hal.science/hal-01894495
Submitted on 12 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01894495
https://hal.archives-ouvertes.fr

Predicting the Possibilistic Score of OWL
Axioms through Support Vector Regression

Dario Malchiodi', Célia da Costa Pereira?, and Andrea G. B. Tettamanzi?

! Universita degli Studi di Milano, Dipartimento di Informatica, Italy
dario.malchiodi@unimi.it
2 Université Cote d’Azur, CNRS, 13S, France

{celia.pereira,andrea.tettamanzi}@unice.fr

Abstract. Within the context of ontology learning, we consider the
problem of selecting candidate axioms through a suitable score. Focusing
on subsumption axioms, this score is learned coupling support vector re-
gression with a special similarity measure inspired by the Jaccard index
and justified by semantic considerations. We show preliminary results ob-
tained when the proposed methodology is applied to pairs of candidate
OWL axioms, and compare them with an analogous inference procedure
based on fuzzy membership induction.

1 Introduction and Related Works

Schema enrichment is one important ingredient of ontology learning [9]. In par-
ticular, in the context of the semantic Web, the increasing amount of Linked
Data causes schema enrichment to be an emerging field of research. Its goal is
that of automatizing the work of knowledge engineers by leveraging existing on-
tologies (typically expressed in OWL) and instance data (typically represented
in RDF) [8]. The final aim is detecting meaningful patterns and learn schema
axioms from existing instance data (facts) and their metadata, if available, using
induction-based methods like the ones developed in inductive logic programming
and data mining.

Many other researchers are convinced of the benefit of using enriched schemas
to improve the quality of the reasoning process in the semantic Web. Fleis-
chhacker and colleagues, for example, use statistical schema induction in the
approach they proposed to enrich the schema of any RDF dataset with prop-
erty axioms [6]. In the same line, Tépper and colleagues propose an approach in
which they focus on the enrichment of the DBpedia ontology by using statistical
methods [16]. Huitzil et al. explored the possibility of learning dataypes within
ontologies [7]. Bithmann and colleagues proposed a light-weight method to en-
rich knowledge bases accessible via SPARQL endpoints with almost all types of
OWL 2 axioms. The aim of their approach was to allow to create a schema in a
semi-automatic way [4].

All these approaches to schema enrichment critically rely on (candidate)
axiom scoring. In practice, testing an axiom boils down to computing an accept-
ability score, measuring the extent to which the axiom is compatible with the
recorded facts.



Methods to approximate the semantics of given types of axioms have been
throughly investigated in the last decade (e.g., approximate subsumption [14])
and some related heuristics have been proposed to score concept definitions in
concept learning algorithms [13]. The most popular candidate axiom scoring
heuristics proposed in the literature are based on statistical inference (see, e.g.,
[4]). An alternative axiom scoring heuristics based on a formalization in pos-
sibility theory of the notions of logical content of a theory and of falsification
and complying with an open-world semantics has recently been proposed [15].
While empirical evidence has been found that such a possibilistic scoring heuris-
tics may lead to more accurate ontologies, the heavy computational cost of the
heuristics makes it hard to apply in practice, unless some implementation tricks
are devised (e.g., time capping).

A promising alternative to the direct computation of the possibilistic score
consists in training a surrogate model on a sample of candidate axioms for which
the score had already been computed or is otherwise available, in order to be
capable of predicting the score of a novel, unseen candidate axiom. This idea
was recently proposed in [10], using an adaptation of support vector clustering
for learning the membership functions for fuzzy sets.

In this work, we follow the same general scheme, but we apply support vector
regression to obtain a simpler surrogate model and we compare our preliminary
results to those obtained with the modified support vector clustering on the
same dataset of SubClass0f (i.e., subsumption) axioms, whose possibilistic score
has been previously determined by direct application of the heuristics on the
DBpedia RDF dataset [15].

The paper is structured as follows: Sect. 2 gives some background on the
possibilistic axiom scoring heuristics and on how the similarity between axioms
is computed. In Sect. 3 we illustrate the learning procedure having as input the
above mentioned scores and similarities, and producing predictors as output.
The performed numerical experiments are described and discussed in Sect. 4.
Some concluding remarks end the paper.

2 Background on Axiom Scoring and Similarity

The possibilistic axiom score we wish to be able to predict was proposed in [15],
to which the reader is referred to for the details. Given a candidate OWL 2 axiom
¢, expressing a hypothesis about the relations holding among some entities of a
domain, a degree of possibility II(¢) and of necessity N(¢) for ¢ are computed
based the evidence available contained in an RDF dataset K.

The possibility and necessity of an axiom can then be combined into a single
handy acceptance/rejection index

ARI(¢) = N(¢) + [1(¢) — 1 = N(¢) — N(=9) (1)
_H( ) ( (b) [ 171]7

because N(¢) = 1 — II(—¢) and II(¢) = 1 — N(—¢) (duality of possibility
and necessity). A negative ARI(¢) suggests rejection of ¢ (IT(¢) < 1), whilst a



Table 1. A summary of the formulas to be used to compute the similarity sim(¢, )
between positive or negated subsumption axioms ¢ and .
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positive ARI(¢) suggests its acceptance (N (¢) > 0), with a strength proportional
to its absolute value. A value close to zero reflects ignorance about the status of
0.

One nice property of this acceptance/rejection index, which stems from the
duality of possibility and necessity, is that, for all ¢,

ARI(—¢) = —ARI(¢).

The idea proposed in [10] is that, if we can train a model to predict II(¢)
and IT(—¢), we have enough information to estimate ARI(¢) without having to
directly compute it.

Support vector regression, which we use to train a predictor of the possibil-
ity of OWL axioms, requires a kernel function which, for our purposes, may be
viewed as a similarity measure between candidate axioms. To allow the compar-
ison of the results, we adopt the semantic similarity measure, somehow reminis-
cent of the Jaccard index, proposed and justified in [10], to which the interested
reader is referred. Given two subsumption axioms A C B and C' C D and their
negations A Z B and C' [Z D, where A, B, C, and D are OWL class expressions,
such similarity can be written as shown in Table 1, where [E] = {a : E(a)}
denotes the extension of class expression E in the RDF dataset at hand.

3 Support Vector Regression

In its simplest formulation, the extension of support-vector framework [5] to re-
gression problems consists in considering a multiobjective optimization in which
lines are scored according to their flatness and to their distance from a set of
points. The tradeoff between these components is ruled via a parameter C' > 0.
Different flavors of this technique are defined in function of how the above men-
tioned distance is defined and penalized [12, 3]. In particular:

— e-insensitive regression fixes a parameter € > 0 representing the width of a
tube centered around the line: the loss is null for all points falling within
this tube and equal to the distance w.r.t. its frontier otherwise;



— ridge regression considers a quadratic loss in terms of the distance between
line and points.

This basic scheme is extended to nonlinear regression using kernel methods,
that is mapping the original points via a nonlinear transformation onto a higher-
dimensional space, and trying to find a linear regression therein. In particular,
as the original points occur in the problem formalization only in form of dot
product computations, the only change amounts to replacing all such occur-
rences with invocations of a suitable kernel function amounting for computing
the dot product of the images of its arguments. In the next section we detail
how the heuristic of Sect. 2 can be used in order to build a kernel function whose
arguments are axioms.

4 Experiments

We adopted the approaches to support vector regression resumed in Sect. 3
to the problem of building a predictor for the ARI value for candidate OWL
axioms on the basis of its measurements on a limited set of formulas, using the
methodology described in Sect. 2. In particular, we used as a reference the same
settings as in [10], briefly summarized hereafter:*

— we considered m = 722 SubClassOf axioms involving atomic classes which
were exactly scored against DBpedia,? as well as their negations, in a set A
(thus a total of n = 2m = 1444 formulas), computing sim for each pair;

— we took the possibility of each formula ¢; € A previously computed using
the heuristic described in [15], henceforth identified as a value u; = II(¢;)
of the “acceptability” of ¢; as an axiom.

We used the sim values as kernel computations and the possibility values as tar-
get to be predicted using the two variants of support vector regression described
in previous section. Given the small size of available data, we resorted to iterat-
ing ten times the following holdout scheme in order to assess the generalization
ability of the inferred predictors. Training, validation, and test sets containing
the 80%, 10%, and 10% of original data, respectively, have been obtained after
shuffling the dataset.? Validation involved in both cases the tradeoff parameter
C, and the tube width when considering e-insensitive regression.* Model selec-
tion was guided by RMSE accuracy. Table 2 summarizes the results on test sets
in terms of RMSE, median, and standard deviation of the corresponding errors,
both considering the ability of the inferred model to predict: (i) the acceptability
w; = II(¢;) of a formula, and (ii) its ARI according to (1). The ridge regression
variant highlights better results w.r.t. both performance metrics with essentially
comparable variability, although only ARI was deemed in [10] as a key indicator.

! Code and data to replicate all experiments is available at https://github.com/
dariomalchiodi/SUM2018.

2 The computation of the exact score took 290 CPU days on a 12 6-core CPU machine.

3 BEach pair (¢, —¢) was assigned to a same set in order to be able to compute its ARI.

4 After some experimentation these parameters were selected within a grid considering
all magnitudes between 1072 and 10* and between 1072 and 10°, respectively.



Table 2. Results of acceptability and ARI learning using e-insensitive regression, ridge
regression, and fuzzy inference in 10 repeated holdout experiments measuring root
mean square (RMSE), median (Median), and standard deviation (STDEV) of errors.

Method Acceptability ARI Time (mins.)
RMSE Median STDEV RMSE Median STDEV
e-insensitive 4.83e-01 2.50e-01 3.94e-02 8.46e-01 9.55e-01 4.11e-01 4
ridge 3.89e-01 8.58e-02 2.67e-01 6.28e-01 1.91e-01 6.37e-01 2
fuzzy 3.08e-01 0.00e+4-00 1.54e-01 4.86e-01 7.56e-04 3.34e-01 500
(a) (b)

Fig. 1. Histograms of median errors for two iterations of the holdout scheme when
using ridge regression, respectively highliting the presence and the absence of a mix of
two distributions.

Table 2 also compares the results with those of an analogous experiment
based on a tailored procedure interpreting ;s as membership values to a fuzzy
set to be learned [10].° It is clear that the original results outperform the pre-
sented ones in terms of the proposed metrics. Things are radically different if
we take into account also the time dimension: the eight hours needed to train
and tune the fuzzy-based system — already incomparable to the 290 days re-
quired to produce the initial ARI labels — are further reduced to two minutes
when using ridge regression. This amounts to a speed factor of roughly 0.004
with an equal factor in performance degradation. The ridge regression results
also share with the original approach a better performance of the median w.r.t.
RMSE, although with a smaller intensity. This led to conjecturing the presence
of easy and hard to learn formulas, but this conjecture is less evident now: in-
deed, only in around half of the holdout iterations the histogram of median
errors highlights a mixture of two error distributions, and anyhow they appear
not strongly separated (see Fig. 1 for an example of both cases). Puzzlingly, a
very strong separation between two median error distribution is always obtained
when considering e-insensitive regression, despite its lower performances. Thus
we repeated the experiment proposed in [10] with the aim of testing this conjec-
ture, computing the average median error in all iterations and finding its best
clusterization in terms of silhoutette index [11]. More precisely, we considered:

5 This procedure is parametrized on the choice of different shapes for the fuzzy set
membership function: the table reports for each column the best obtained result.



(i) both regression methods, (ii) only e-insensitive regression, and (iii) only ridge
regression. The best clusterization consisted of two groups only in (ii) and (iii).
This led us to further inspect the two classes of candidate axioms only in terms
of ridge regression. Specifically, we found 30 hard axioms with an overlap of
around 40% with those found in the original paper. Such axioms are listed in
Table 3; those that were also in [10] are marked with an asterisk.

Table 3. Positive members of the detected “hard” axiom pairs.

SubClassOf (schema:Product dbo:MeanOfTransportation) *
SubClassO0f (dbo:Chancellor dbo:Person)

SubClass0f (schema:School gml:_Feature) *

SubClass0f (dbo:BeautyQueen dbo:Person)
SubClass0f (dbo: InformationAppliance schema:Person)
SubClassO0f (dbo:Racecourse gml:_Feature) *

SubClassO0f (dbo:WomensTennisAssociationTournament skos:Concept)
SubClass0f (dbo:VolleyballCoach dbo:Person)

SubClassO0f (dbo:VolleyballCoach owl:Thing)

SubClassO0f (dbo:VolleyballCoach foaf:Person)
SubClassO0f (dbo:Presenter dbo:RadioHost)

SubClassO0f (dbo:Venue gml:_Feature) *

SubClassOf (dbo:YearInSpaceflight skos:Concept) *
SubClass0f (dbo:ComedyGroup schema:0Organization)
SubClass0f (dbo:ComedyGroup foaf:Person) *

5 Conclusions

We have applied support vector regression to the task of predicting the pos-
sibilistic score of candidate OWL subsumption axioms. Ridge regression gives
better results than e-insensitive regression. A comparison with a previous pro-
posal using a modified support vector clustering for learning fuzzy sets shows
that the regression approach allows for a faster training time fairly scaling with
performance degradation. Our results also confirm the existence of a small sub-
set of axioms that are much harder to score than the rest; however, this subset
appears to depend, at least to some extent, on the method used to predict the
score. Future work includes trying other prediction methods [2, 1], but also re-
formulating the scoring problem as a binary classification problem, which would
suit the needs of schema enrichment equally well.
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