Motivic realizations of singularity categories and vanishing cycles
Résumé
In this paper we establish a precise comparison between vanishing cycles and the singularity category of Landau-Ginzburg models over an excellent Henselian discrete valuation ring. By using noncommutative motives, we first construct a motivic-adic realization functor for dg-categories. Our main result, then asserts that, given a Landau-Ginzburg model over a complete discrete valuation ring with potential induced by a uniformizer, the-adic realization of its singularity category is given by the inertia-invariant part of vanishing cohomology. We also prove a functorial and ∞-categorical lax symmetric monoidal version of Orlov's comparison theorem between the derived category of singularities and the derived category of matrix factorizations for a Landau-Ginzburg model over a noetherian regular local ring.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...