Motivic realizations of singularity categories and vanishing cycles - Archive ouverte HAL
Article Dans Une Revue Journal de l'École polytechnique — Mathématiques Année : 2018

Motivic realizations of singularity categories and vanishing cycles

Résumé

In this paper we establish a precise comparison between vanishing cycles and the singularity category of Landau-Ginzburg models over an excellent Henselian discrete valuation ring. By using noncommutative motives, we first construct a motivic-adic realization functor for dg-categories. Our main result, then asserts that, given a Landau-Ginzburg model over a complete discrete valuation ring with potential induced by a uniformizer, the-adic realization of its singularity category is given by the inertia-invariant part of vanishing cohomology. We also prove a functorial and ∞-categorical lax symmetric monoidal version of Orlov's comparison theorem between the derived category of singularities and the derived category of matrix factorizations for a Landau-Ginzburg model over a noetherian regular local ring.
Fichier principal
Vignette du fichier
padicMF.pdf (918.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01891197 , version 1 (09-10-2018)
hal-01891197 , version 2 (07-04-2020)

Identifiants

Citer

Anthony Blanc, Marco Robalo, Bertrand Toën, Gabriele Vezzosi. Motivic realizations of singularity categories and vanishing cycles. Journal de l'École polytechnique — Mathématiques, 2018, Tome 5, pp.651-747. ⟨10.5802/jep.81⟩. ⟨hal-01891197v2⟩
158 Consultations
186 Téléchargements

Altmetric

Partager

More