Near-Optimal ε-Kernel Construction and Related Problems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Near-Optimal ε-Kernel Construction and Related Problems

Sunil Arya
  • Fonction : Auteur
  • PersonId : 1037255
David M Mount
  • Fonction : Auteur
  • PersonId : 1037256

Résumé

The computation of (i) ε-kernels, (ii) approximate diameter, and (iii) approximate bichromatic closest pair are fundamental problems in geometric approximation. In each case the input is a set of points in d dimensions for constant d and an approximation parameter ε > 0. In this paper, we describe new algorithms for these problems, achieving significant improvements to the exponent of the ε-dependency in their running times, from roughly d to d / 2 for the first two problems and from roughly d / 3 to d / 4 for problem (iii). These results are all based on an efficient decomposition of a convex body using a hierarchy of Macbeath regions, and contrast to previous solutions that decomposed the space using quadtrees and grids. By further application of these techniques, we also show that it is possible to obtain near-optimal preprocessing time for the most efficient data structures for (iv) approximate nearest neighbor searching, (v) directional width queries, and (vi) polytope membership queries.
Fichier principal
Vignette du fichier
kernel_socg.pdf (465.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01890096 , version 1 (08-10-2018)

Identifiants

  • HAL Id : hal-01890096 , version 1

Citer

Sunil Arya, Guilherme da Fonseca, David M Mount. Near-Optimal ε-Kernel Construction and Related Problems. Symposium on Computational Geometry (SoCG 2017), Jul 2017, Brisbane, Australia. ⟨hal-01890096⟩
42 Consultations
13 Téléchargements

Partager

More