Pigeons do not jump high - Archive ouverte HAL
Article Dans Une Revue Advances in Mathematics Année : 2019

Pigeons do not jump high

Résumé

The infinite pigeonhole principle for 2-partitions asserts the existence, for every set $A$, of an infinite subset of $A$ or of its complement. In this paper, we develop a new notion of forcing enabling a fine analysis of the computability-theoretic features of the pigeonhole principle. We deduce various consequences, such as the existence, for every set $A$, of an infinite subset of it or its complement of non-high degree. We also prove that every $\Delta^0_3$ set has an infinite low${}_3$ solution and give a simpler proof of Liu's theorem that every set has an infinite subset in it or its complement of non-PA degree.
Fichier principal
Vignette du fichier
pigeons-jump.pdf (365.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01888793 , version 1 (05-10-2018)

Identifiants

Citer

Benoit Monin, Ludovic Patey. Pigeons do not jump high. Advances in Mathematics, 2019, 352, pp.1066--1095. ⟨10.1016/j.aim.2019.06.026⟩. ⟨hal-01888793⟩
94 Consultations
53 Téléchargements

Altmetric

Partager

More