A computable analysis of variable words theorems - Archive ouverte HAL
Article Dans Une Revue Proceedings of the American Mathematical Society Année : 2019

A computable analysis of variable words theorems

Résumé

The Carlson-Simpson lemma is a combinatorial statement occurring in the proof of the Dual Ramsey theorem. Formulated in terms of variable words, it informally asserts that given any finite coloring of the strings, there is an infinite sequence with infinitely many variables such that for every valuation, some specific set of initial segments is homogeneous. Friedman, Simpson, and Montalban asked about its reverse mathematical strength. We study the computability-theoretic properties and the reverse mathematics of this statement, and relate it to the finite union theorem. In particular, we prove the Ordered Variable word for binary strings in ACA 0 .
Fichier principal
Vignette du fichier
variable-words.pdf (325.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01888789 , version 1 (09-10-2018)

Identifiants

Citer

Lu Liu, Benoit Monin, Ludovic Patey. A computable analysis of variable words theorems. Proceedings of the American Mathematical Society, 2019, 147 (2), pp.823--834. ⟨10.1090/proc/14269⟩. ⟨hal-01888789⟩
114 Consultations
92 Téléchargements

Altmetric

Partager

More