Degrees bounding principles and universal instances in reverse mathematics - Archive ouverte HAL
Article Dans Une Revue Annals of Pure and Applied Logic Année : 2015

Degrees bounding principles and universal instances in reverse mathematics

Résumé

A Turing degree d bounds a principle P of reverse mathematics if every computable instance of P has a d-computable solution. P admits a universal instance if there exists a computable instance such that every solution bounds P. We prove that the stable version of the ascending descending sequence principle (SADS) as well as the stable version of the thin set theorem for pairs (STS(2)) do not admit a bound of low 2 degree. Therefore no principle between Ramsey's theorem for pairs (RT 2 2) and SADS or STS(2) admit a universal instance. We construct a low 2 degree bounding the Erd˝ os Moser theorem (EM), thereby showing that the previous argument does not hold for EM. Finally, we prove that the only ∆ 0 2 degree bounding a stable version of the rainbow Ramsey theorem for pairs (SRRT 2 2) is 0. Hence no principle between the stable Ramsey theorem for pairs (SRT 2 2) and SRRT 2 2 admit a universal instance. In particular the stable version of the Erd˝ os-Moser theorem does not admit one. It remains unknown whether EM admits a universal instance.
Fichier principal
Vignette du fichier
universal-instances.pdf (246.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01888599 , version 1 (05-10-2018)

Identifiants

Citer

Ludovic Patey. Degrees bounding principles and universal instances in reverse mathematics. Annals of Pure and Applied Logic, 2015, 166 (11), pp.1165 - 1185. ⟨10.1016/j.apal.2015.07.003⟩. ⟨hal-01888599⟩
46 Consultations
78 Téléchargements

Altmetric

Partager

More