Hierarchical Graph Clustering using Node Pair Sampling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Hierarchical Graph Clustering using Node Pair Sampling

Résumé

We present a novel hierarchical graph clustering algorithm inspired by modularity-based clustering techniques. The algorithm is agglomerative and based on a simple distance between clusters induced by the probability of sampling node pairs. We prove that this distance is reducible, which enables the use of the nearest-neighbor chain to speed up the agglomeration. The output of the algorithm is a regular dendrogram, which reveals the multi-scale structure of the graph. The results are illustrated on both synthetic and real datasets.
Fichier principal
Vignette du fichier
arxiv.pdf (1.26 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01887669 , version 1 (04-10-2018)

Identifiants

  • HAL Id : hal-01887669 , version 1

Citer

Thomas Bonald, Bertrand Charpentier, Alexis Galland, Alexandre Hollocou. Hierarchical Graph Clustering using Node Pair Sampling. MLG 2018 - 14th International Workshop on Mining and Learning with Graphs, Aug 2018, London, United Kingdom. ⟨hal-01887669⟩
298 Consultations
904 Téléchargements

Partager

More