
HAL Id: hal-01887669
https://hal.science/hal-01887669v1

Submitted on 4 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Graph Clustering using Node Pair Sampling
Thomas Bonald, Bertrand Charpentier, Alexis Galland, Alexandre Hollocou

To cite this version:
Thomas Bonald, Bertrand Charpentier, Alexis Galland, Alexandre Hollocou. Hierarchical Graph
Clustering using Node Pair Sampling. MLG 2018 - 14th International Workshop on Mining and
Learning with Graphs, Aug 2018, London, United Kingdom. �hal-01887669�

https://hal.science/hal-01887669v1
https://hal.archives-ouvertes.fr

Hierarchical Graph Clustering using Node Pair Sampling

Thomas Bonald1, Bertrand Charpentier∗1, Alexis Galland2, and Alexandre Hollocou2

1Telecom ParisTech, Paris, France
2Inria, Paris, France

June 22, 2018

Abstract

We present a novel hierarchical graph clustering algorithm inspired by modularity-based clustering
techniques. The algorithm is agglomerative and based on a simple distance between clusters induced by
the probability of sampling node pairs. We prove that this distance is reducible, which enables the use
of the nearest-neighbor chain to speed up the agglomeration. The output of the algorithm is a regular
dendrogram, which reveals the multi-scale structure of the graph. The results are illustrated on both
synthetic and real datasets.

1 Introduction

Many datasets can be represented as graphs, being the graph explicitely embedded in data (e.g., the friendship
relation of a social network) or built through some suitable similarity measure between data items (e.g.,
the number of papers co-authored by two researchers). Such graphs often exhibit a complex, multi-scale
community structure where each node is invoved in many groups of nodes, so-called communities, of different
sizes.

One of the most popular graph clustering algorithm is known as Louvain in name of the university of its
inventors [Blondel et al., 2008]. It is based on the greedy maximization of the modularity, a classical objective
function introduced in [Newman and Girvan, 2004]. The Louvain algorithm is fast, memory-efficient, and
provides meaningful clusters in practice. It does not enable an analysis of the graph at different scales, however
[Fortunato and Barthelemy, 2007, Lancichinetti and Fortunato, 2011]. The resolution parameter available in
the current version of the algorithm1 is not directly related to the number of clusters or the cluster sizes and
thus is hard to adjust in practice.

In this paper, we present a novel algorithm for hierarchical clustering that captures the multi-scale
nature of real graphs. The algorithm is fast, memory-efficient and parameter-free. It relies on a novel
notion of distance between clusters induced by the probability of sampling node pairs. We prove that this
distance is reducible, which guarantees that the resulting hierarchical clustering can be represented by regular
dendrograms and enables a fast implementation of our algorithm through the nearest-neighbor chain scheme,
a classical technique for agglomerative algorithms [Murtagh and Contreras, 2012].

The rest of the paper is organized as follows. We present the related work in Section 2. The notation
used in the paper, the distance between clusters used to aggregate nodes and the clustering algorithm are
presented in Sections 3, 4 and 5. The link with modularity and the Louvain algorithm is explained in Section
6. Section 7 shows the experimental results and Section 8 concludes the paper.

∗Part of this work has been done while Bertrand Charpentier was a Master student at KTH, Sweden.
1See the python-louvain Python package.

1

2 Related work

Most graph clustering algorithms are not hierarchical and rely on some resolution parameter that allows
one to adapt the clustering to the dataset and to the intended purpose [Reichardt and Bornholdt, 2006,
Arenas et al., 2008, Lambiotte et al., 2014, Newman, 2016]. This parameter is hard to adjust in practice,
which motivates the present work.

Usual hierarchical clustering techniques apply to vector data [Ward, 1963, Murtagh and Contreras, 2012].
They do not directly apply to graphs, unless the graph is embedded in some metric space, through spectral
techniques for instance [Luxburg, 2007, Donetti and Munoz, 2004].

A number of hierarchical clustering algorithms have been developped specifically for graphs. The most
popular algorithms are agglomerative and characterized by some distance between clusters, see [Newman, 2004,
Pons and Latapy, 2005, Huang et al., 2010, Chang et al., 2011]. None of these distances has been proved to
be reducible, a key property of our algorithm. Among non-agglomerative algorithms, the divisive approach
of [Newman and Girvan, 2004] is based on the notion of edge betweenness while the iterative approach
of [Sales-Pardo et al., 2007] and [Lancichinetti et al., 2009] look for local maxima of modularity or some
fitness function; other approaches rely on statistical interence [Clauset et al., 2008], replica correlations
[Ronhovde and Nussinov, 2009] and graph wavelets [Tremblay and Borgnat, 2014]. To our knowledge, non
of these algorithms has been proved to lead to regular dendrograms (that is, without inversion).

Finally, the Louvain algorithm also provides a hierarchy, induced by the successive aggregation steps
of the algorithm [Blondel et al., 2008]. This is not a full hierarchy, however, as there are typically a few
aggregation steps. Moreover, the same resolution is used in the optimization of modularity across all levels of
the hierarchy, while the numbers of clusters decrease rapidly after a few aggregation steps. We shall see that
our algorithm may be seen as a modified version of Louvain using a sliding resolution, that is adapted to the
current agglomeration step of the algorithm.

3 Notation

Consider a weighted, undirected graph G = (V,E) of n nodes, with V = {1, . . . , n}. Let A be the corresponding
weighted adjacency matrix. This is a symmetric, non-negative matrix such that for each i, j ∈ V , Aij > 0 if
and only if there is an edge between i and j, in which case Aij is the weight of edge {i, j} ∈ E. We refer to
the weight of node i as the sum of the weights of its incident edges,

wi =
∑
j∈V

Aij .

Observe that for unit weights, wi is the degree of node i. The total weight of the nodes is:

w =
∑
i∈V

wi =
∑
i,j∈V

Aij .

We refer to a clustering C as any partition of V . In particular, each element of C is a subset of V , we refer
to as a cluster.

4 Node pair sampling

The weights induce a probability distribution on node pairs,

∀i, j ∈ V, p(i, j) =
Aij
w
,

and a probability distribution on nodes,

∀i ∈ V, p(i) =
∑
j∈V

p(i, j) =
wi
w
.

2

Observe that the joint distribution p(i, j) depends on the graph (in particular, only neighbors i, j are sampled
with positive probability), while the marginal distribution p(i) depends on the graph through the node weights
only.

We define the distance between two distinct nodes i, j as the node pair sampling ratio2:

d(i, j) =
p(i)p(j)

p(i, j)
, (1)

with d(i, j) = +∞ if p(i, j) = 0 (i.e., i and j are not neighbors). Nodes i, j are close with respect to this
distance if the pair i, j is sampled much more frequently through the joint distribution p(i, j) than through
the product distribution p(i)p(j). For unit weights, the joint distribution is uniform over the edges, so that
the closest node pair is the pair of neighbors having the lowest degree product.

Another interpretation of the node distance d follows from the conditional probability,

∀i, j ∈ V, p(i|j) =
p(i, j)

p(j)
=
Aij
wj

.

This is the conditional probability of sampling i given that j is sampled (from the joint distribution). The
distance between i and j can then be written

d(i, j) =
p(i)

p(i|j)
=

p(j)

p(j|i)
.

Nodes i, j are close with respect to this distance if i (respectively, j) is sampled much more frequently given
that j is sampled (respectively, i).

Similarly, consider a clustering C of the graph (that is, a partition of V). The weights induce a probability
distribution on cluster pairs,

∀a, b ∈ C, p(a, b) =
∑

i∈a,j∈b

p(i, j),

and a probability distribution on clusters,

∀a ∈ C, p(a) =
∑
i∈a

p(i) =
∑
b∈C

p(a, b).

We define the distance between two distinct clusters a, b as the cluster pair sampling ratio:

d(a, b) =
p(a)p(b)

p(a, b)
, (2)

with d(a, b) = +∞ if p(a, b) = 0 (i.e., there is no edge between clusters a and b). Defining the conditional
probability

∀a, b ∈ C, p(a|b) =
p(a, b)

p(b)
,

which is the conditional probability of sampling a given that b is sampled, we get

d(a, b) =
p(a)

p(a|b)
=

p(b)

p(b|a)
.

This distance will be used in the agglomerative algorithm to merge the closest clusters. We have the following
key results.

Proposition 1 (Update formula) For any distinct clusters a, b, c ∈ C,

d(a ∪ b, c) =

(
p(a)

p(a ∪ b)
1

d(a, c)
+

p(b)

p(a ∪ b)
1

d(b, c)

)−1
.

2The distance d is not a metric in general. We only require symmetry and non-negativity.

3

Proof. We have:

p(a ∪ b)p(c)d(a ∪ b, c)−1 = p(a ∪ b, c),
= p(a, c) + p(b, c),

= p(a)p(c)d(a, c)−1 + p(b)p(c)d(b, c)−1,

from which the formula follows. �

Proposition 2 (Reducibility) For any distinct clusters a, b, c ∈ C,

d(a ∪ b, c) ≥ min(d(a, c), d(b, c)).

Proof. By Proposition 1, d(a ∪ b, c) is a weighted harmonic mean of d(a, c) and d(b, c), from which the
inequality follows. �

By the reducibility property, merging clusters a and b cannot decrease their minimum distance to any
other cluster c.

5 Clustering algorithm

The agglomerative approach consists in starting from individual clusters (i.e., each node is in its own cluster)
and merging clusters recursively. At each step of the algorithm, the two closest clusters are merged. We
obtain the following algorithm:

1. Initialization
C ← {{1}, . . . , {n}}
L← ∅

2. Agglomeration
For t = 1, . . . , n− 1,

• a, b← arg mina′,b′∈C,a′ 6=b′ d(a′, b′)

• C ← C \ {a, b}
• C ← C ∪ {a ∪ b}
• L← L ∪ {{a, b}}

3. Return L

The successive clusterings C0, C1, . . . , Cn−1 produced by the algorithm, with C0 = {{1}, . . . , {n}}, can
be recovered from the list L of successive merges. Observe that clustering Ct consists of n− t clusters, for
t = 0, 1, . . . , n − 1. By the reducibility property, the corresponding sequence of distances d0, d1, . . . , dn−1
between merged clusters, with d0 = 0, is non-decreasing, resulting in a regular dendrogram (that is, without
inversions) [Murtagh and Contreras, 2012].

It is worth noting that the graph G does not need to be connected. If the graph consists of k connected
components, then the clustering Cn−k gives these k connected components, whose respective distances are
infinite; the k − 1 last merges can then be done in an arbitrary order. Moreover, the hierarchies associated
with these connected components are independent of one another (i.e., the algorithm successively applied to
the corresponding subgraphs would produce exactly the same clustering). Similarly, we expect the clustering
of weakly connected subgraphs to be approximately independent of one another. This is not the case of the
Louvain algorithm, whose clustering depends on the whole graph through the total weight w, a shortcoming
related to the resolution limit of modularity (see Section 6).

4

Aggregate graph. In view of (2), for any clustering C of V , the distance d(a, b) between two clusters
a, b ∈ C is the distance between two nodes a, b of the following aggregate graph: nodes are the elements of
C and the weight between a, b ∈ C (including the case a = b, corresponding to a self-loop) is

∑
i∈a,j∈bAij .

Thus the agglomerative algorithm can be implemented by merging nodes and updating the weights (and thus
the distances between nodes) at each step of the algorithm. Since the initial nodes of the graph are indexed
from 0 to n− 1, we index the cluster created at step t of the algorithm by n+ t. We obtain the following
version of the above algorithm, where the clusters are replaced by their respective indices:

1. Initialization
V ← {1, . . . , n}
L← ∅

2. Agglomeration
For t = 1, . . . , n− 1,

• i, j ← arg mini′,j′∈V,i′ 6=j′ d(i′, j′)

• L← L ∪ {{i, j}}
• V ← V \ {i, j}
• V ← V ∪ {n+ t}
• p(n+ t)← p(i) + p(j)

• p(n+ t, u)← p(i, u) + p(j, u) for u ∈ V \ {n ∪ t}

3. Return L

Nearest-neighbor chain. By the reducibility property of the distance, the algorithm can be implemented
through the nearest-neighbor chain scheme [Murtagh and Contreras, 2012]. Starting from an arbitrary node,
a chain a nearest neighbors is formed. Whenever two nodes of the chain are mutual nearest neighbors, these
two nodes are merged and the chain is updated recursively, until the initial node is eventually merged. This
scheme reduces the search of a global minimum (the pair of nodes i, j that minimizes d(i, j)) to that of a
local minimum (any pair of nodes i, j such that d(i, j) = minj′ d(i, j′) = mini′ d(i′, j)), which speeds up the
algorithm while returning exactly the same hierarchy. It only requires a consistent tie-breaking rule for equal
distances (e.g., any node at equal distance of i and j is considered as closer to i if and only if i < j). Observe
that the space complexity of the algorithm is in O(m), where m is the number of edges of G (i.e., the graph
size).

6 Link with modularity

The modularity is a standard metric to assess the quality of a clustering C (any partition of V). Let
δC(i, j) = 1 if i, j are in the same cluster under clustering C, and δC(i, j) = 0 otherwise. The modularity of
clustering C is defined by [Newman and Girvan, 2004]:

Q(C) =
1

w

∑
i,j∈V

(Aij −
wiwj
w

)δC(i, j), (3)

which can be written in terms of probability distributions,

Q(C) =
∑
i,j∈V

(p(i, j)− p(i)p(j))δC(i, j).

Thus the modularity is the difference between the probabilities of sampling two nodes of the same cluster
under the joint distribution p(i, j) and under the product distribution p(i)p(j). It can also be expressed from

5

the probability distributions at the cluster level,

Q(C) =
∑
a∈C

(p(a, a)− p(a)2).

It is clear from (3) that any clustering C maximizing modularity has some resolution limit, as pointed out
in [Fortunato and Barthelemy, 2007], because the second term is normalized by the total weight w and thus
becomes negligible for too small clusters. To go beyond this resolution limit, it is necessary to introduce a
multiplicative factor γ, called the resolution. The modularity becomes:

Qγ(C) =
∑
i,j∈V

(p(i, j)− γp(i)p(j))δC(i, j), (4)

or equivalently,

Qγ(C) =
∑
a∈C

(p(a, a)− γp(a)2).

This resolution parameter can be interpreted through the Potts model of statistical physics [Reichardt and Bornholdt, 2006],
random walks [Lambiotte et al., 2014], or statistical inference of a stochastic block model [Newman, 2016].
For γ = 0, the resolution is minimum and there is a single cluster, that is C = {{1, . . . , n}}; for γ → +∞,
the resolution is maximum and each node has its own cluster, that is C = {{1}, . . . , {n}}.

The Louvain algorithm consists, for any fixed resolution parameter γ, of the following steps:

1. Initialization
C ← {{1}, . . . , {n}}

2. Iteration
While modularity Qγ(C) increases, update C by moving one node from one cluster to another.

3. Aggregation
Merge all nodes belonging to the same cluster, update the weights and apply step 2 to the resulting
aggregate graph while modularity is increased.

4. Return C

The result of step 2 depends on the order in which nodes and clusters are considered; typically, nodes are
considered in a cyclic way and the target cluster of each node is that maximizing the modularity increase.

Our algorithm can be viewed as a modularity-maximizing scheme with a sliding resolution. Starting from
the maximum resolution where each node has its own cluster, we look for the first value of the resolution
parameter γ, say γ1, that triggers a single merge between two nodes, resulting in clustering C1. In view of
(4), we have:

γ1 = max
i,j∈V

p(i, j)

p(i)p(j)
.

These two nodes are merged (corresponding to the aggregation phase of the Louvain algorithm) and we
look for the next value of the resolution parameter, say γ2, that triggers a single merge between two nodes,
resulting in clustering C2, and so on. By construction, the resolution at time t (that triggers the t-th merge)
is γt = 1/dt and the corresponding clustering Ct is that of our algorithm. In particular, the sequence of
resolutions γ1, . . . , γn−1 is non-increasing.

To summarize, our algorithm consists of a simple but deep modification of the Louvain algorithm, where
the iterative step (step 2) is replaced by a single merge, at the best current resolution (that resulting in a
single merge). In particular, unlike the Louvain algorithm, our algorithm provides a full hierarchy. Moreover,
the sequence of resolutions γ1, . . . , γn−1 can be used as an input to the Louvain algorithm. Specifically, the
resolution γt provides exactly n− t clusters in our case, and the Louvain algorithm is expected to provide
approximately the same number of clusters at this resolution.

6

7 Experiments

We have coded our hierarchical clustering algorithm, we refer to as Paris3, in Python. All material necessary
to reproduce the experiments presented below is available online4.

Qualitative results. We start with a hierarchical stochastic block model, as described in [Lyzinski et al., 2017].
There are n = 160 nodes structured in 2 levels, with 4 blocks of 40 nodes at level 1, each block of 40 nodes
being divided into 4 blocks of 10 nodes at level 2 (see Figure 1).

(a) Level 1 (b) Level 2

Figure 1: A hierachical stochastic block model with 2 levels of hierarchy.

The output of Paris is shown in Figure 2 as a dendrogram where the distances (on the y-axis) are in
log-scale. The two levels of hierarchy clearly appear.

Figure 2: Dendrogram associated with the clustering of Paris on a hierachical stochastic block model of 16
blocks.

We also show in Figure 3 the number of clusters with respect to the resolution parameter γ for Paris (top)
and Louvain (bottom). The results are very close, and clearly show the hierarchical structure of the model
(vertical lines correspond to changes in the number of clusters). The key difference between both algorithms
is that, while Louvain needs to be run for each resolution parameter γ (here 100 values ranging from 0.01 to
20), Paris is run only once, the relevant resolutions being direct outputs of the algorithm, embedded in the
dendrogram (see Section 6).

We now consider four real datasets, whose characteristics are summarized in Table 1.

3Paris = Pairwise AgglomeRation Induced by Sampling.
4See https://github.com/tbonald/paris

7

https://github.com/tbonald/paris

10 1 100 101

Resolution

0

10

20

30

40

50

60
Nu

m
be

r o
f c

lu
st

er
s

10 1 100 101

Resolution

0

10

20

30

40

50

60

Nu
m

be
r o

f c
lu

st
er

s

Figure 3: Number of clusters with respect to the resolution parameter γ for Paris (top) and Louvain (bottom)
on the hierachical stochastic block model of Figure 1.

Graph # nodes # edges Avg. degree
OpenStreet 5,993 6,957 2.3
OpenFlights 3,097 18,193 12
Wikipedia Schools 4,589 106,644 46
Wikipedia Humans 702,782 3,247,884 9.2

Table 1: Summary of the datasets.

The first dataset, extracted from OpenStreetMap5, is the graph formed by the streets of the center of
Paris. To illustrate the quality of the hierarchical clustering returned by our algorithm, we have extracted the
two “best” clusterings, in terms of ratio between successive distance merges in the corresponding dendrogram;
the results are shown in Figure 4. The best clustering gives two clusters, Rive Droite (with Ile de la Cité)
and Rive Gauche, the two banks separated by the river Seine; the second best clustering divides these two
clusters into sub-clusters.

Figure 4: Clusterings of the OpenStreet graph by Paris.

5https://openstreetmap.org

8

The second dataset, extracted from OpenFlights6, is the graph of airports with the weight between two
airports equal to the number of daily flights between them. We run Paris and extract the best clusterings
from the largest component of the graph, as for the OpenStreet graph. The first two best clusterings isolate
the Island/Groenland area and the Alaska from the rest of the world, the corresponding airports forming
dense clusters, lightly connected with the other airports. The following two best clusterings are shown in
Figure 5, with respectively 5 and 10 clusters corresponding to meaningful continental regions of the world.

Figure 5: Clusterings of the OpenFlights graph by Paris.

6https://openflights.org

9

The third dataset is the graph formed by links between pages of Wikipedia for Schools7, see [West et al., 2009,
West and Leskovec, 2012]. The graph is considered as undirected. Table 2 (top) shows the 10 largest clusters
of Cn−100, the 100 last (and thus largest) clusters found by Paris. Only pages of highest degrees are shown
for each cluster.

The 10 largest clusters of Wikipedia for Schools among 100 clusters found by Paris
Size Main pages
288 Scientific classification, Animal, Chordate, Binomial nomenclature, Bird
231 Iron, Oxygen, Electron, Hydrogen, Phase (matter)
196 England, Wales, Elizabeth II of the United Kingdom, Winston Churchill, William Shakespeare
164 Physics, Mathematics, Science, Albert Einstein, Electricity
148 Portugal, Ethiopia, Mozambique, Madagascar, Sudan
139 Washington, D.C., President of the United States, American Civil War, Puerto Rico, Bill Clinton
129 Earth, Sun, Astronomy, Star, Gravitation
127 Plant, Fruit, Sugar, Tea, Flower
104 Internet, Computer, Mass media, Latin alphabet, Advertising
99 Jamaica, The Beatles, Hip hop music, Jazz, Piano

The 10 largest subclusters of the first cluster above
Size Main pages
71 Dinosaur, Fossil, Reptile, Cretaceous, Jurassic
51 Binomial nomenclature, Bird, Carolus Linnaeus, Insect, Bird migration
24 Mammal, Lion, Cheetah, Giraffe, Nairobi
22 Animal, Ant, Arthropod, Spider, Bee
18 Dog, Bat, Vampire, George Byron, 6th Baron Byron, Bear
16 Eagle, Glacier National Park (US), Golden Eagle, Bald Eagle, Bird of prey
16 Chordate, Parrot, Gull, Surtsey, Herring Gull
15 Feather, Extinct birds, Mount Rushmore, Cormorant, Woodpecker
13 Miocene, Eocene, Bryce Canyon National Park, Beaver, Radhanite
12 Crow, Dove, Pigeon, Rock Pigeon, Paleocene

Table 2: Hierarchical clustering of the graph Wikipedia for Schools by Paris.

Observe that the ability of selecting the clustering associated with some target number of clusters is one
of the key advantage of Paris over Louvain. Moreover, Paris gives a full hiearchy of the pages, meaning that
each of these clusters is divided into sub-clusters in the output of the algorithm. Table 2 (bottom) gives
for instance, among the 500 clusters found by Paris (that is, in Cn−500), the 10 largest clusters that are
subclusters of the first cluster of Table 2 (top), related to animals / taxonomy. The subclusters tend to give
meaningful groups of animals, revealing the multi-scale structure of the dataset.

The fourth dataset is the subgraph of Wikipedia restricted to pages related to humans. We have done
the same experiment as for Wikipedia for Schools. The results are shown in Table 3. Again, we observe
that clusters form relevant groups of people, with cluster #1 corresponding to political figures for instance,
this cluster consisting of meaningful subgroups as shown in the bottom of Table 3. All this information is
embedded in the dendrogram returned by Paris.

7https://schools-wikipedia.org

10

The 10 largest clusters of Wikipedia Humans among 100 clusters found by Paris
Size Main pages
41363 George W. Bush, Barack Obama, Bill Clinton, Ronald Reagan, Richard Nixon
34291 Alex Ferguson, David Beckham, Pelé, Diego Maradona, José Mourinho
25225 Abraham Lincoln, George Washington, Ulysses S. Grant, Thomas Jefferson, Edgar Allan Poe
23488 Madonna, Woody Allen, Martin Scorsese, Tennessee Williams, Stephen Sondheim
23044 Wolfgang Amadeus Mozart, Johann Sebastian Bach, Ludwig van Beethoven, Richard Wagner
22236 Elvis Presley, Bob Dylan, Elton John, David Bowie, Paul McCartney
20429 Queen Victoria, George III of the UK, Edward VII, Charles Dickens, Charles, Prince of Wales
19105 Sting, Jawaharlal Nehru, Rabindranath Tagore, Indira Gandhi, Gautama Buddha
18348 Edward I of England, Edward III of England, Henry II of England, Charlemagne
14668 Jack Kemp, Brett Favre, Peyton Manning, Walter Camp, Tom Brady

The 10 largest subclusters of the first cluster above.
Size Main pages
2722 Barack Obama, John McCain, Dick Cheney, Newt Gingrich, Nancy Pelosi
2443 Arnold Schwarzenegger, Jerry Brown, Ralph Nader, Dolph Lundgren, Earl Warren
2058 Osama bin Laden, Hamid Karzai, Alberto Gonzales, Janet Reno, Khalid Sheikh Mohammed
1917 Dwight D. Eisenhower, Harry S. Truman, Douglas MacArthur, George S. Patton
1742 George W. Bush, Condoleezza Rice, Colin Powell, Donald Rumsfeld, Karl Rove
1700 Bill Clinton, Thurgood Marshall, Mike Huckabee, John Roberts, William Rehnquist
1559 Ed Rendell, Arlen Specter, Rick Santorum, Tom Ridge, Mark B. Cohen
1545 Theodore Roosevelt, Herbert Hoover, William Howard Taft, Calvin Coolidge
1523 Ronald Reagan, Richard Nixon, Jimmy Carter, Gerald Ford, J. Edgar Hoover
1508 Rudy Giuliani, Michael Bloomberg, Nelson Rockefeller, George Pataki, Eliot Spitzer

Table 3: Hierarchical clustering of the graph Wikipedia Humans by Paris.

Quantitative results. To assess the quality of the hierarchical clustering, we use the cost function proposed
in [Dasgupta, 2016] and given by: ∑

a,b

p(a, b)(|a|+ |b|), (5)

where the sum is over all left and right clusters a, b attached to any internal node of the tree representing the
hierarchy. This is the expected size of the smallest subtree containing two random nodes i, j, sampled from
the joint distribution p(i, j) introduced in Section 4. If the tree indeed reflects the underlying hierarchical
structure of the graph, we expect most edges to link nodes that are close in the tree, i.e., whose common
ancestor is relatively far from the root. The size of the corresponding subtree (whose root is this common
ancestor) is expected to be small, meaning that (5) is a relevant cost function. Moreover, it was proved
in [Cohen-Addad et al, 2018] that if the graph is perfectly hierarchical, the underlying tree is optimal with
respect to this cost function.

The results are presented in Table 5 for the graphs considered so far and the graphs of Table 4, selected
from the SNAP datasets [Leskovec and Krevl, 2014]. The cost function is normalized by the number of
nodes n so as to get a value between 0 and 1. We compare the performance of Paris to that of a spectral
algorithm where the nodes are embedded in a space of dimension 20 by using the 20 leading eigenvectors of
the Laplacian matrix L = D −A (D is the diagonal matrix of node weights) and applying the Ward method
in the embedding space. The spectral decomposition of the Laplacian is based on standard functions on
sparse matrices available in the Python package scipy.

Observe that we do not include Louvain in these experiments as this algorithm does not provide a full
hierarchy of the graph, so that the cost function (5) is not applicable.

11

Graph # nodes # edges Avg. degree
Facebook 4,039 88,234 44
Amazon 334,863 925,872 5.5
DBLP 317,080 1,049,866 6.6
Twitter 81,306 1,342,310 33
Youtube 1,134,890 2,987,624 5.2
Google 855,802 4,291,352 10

Table 4: Summary of the considered graphs from SNAP.

The results are shown when the algorithm runs within some time limit (less than 1 hour on a computer
equipped with a 2.8GHz Intel Core i7 CPU with 16GB of RAM). The best performance is displayed in bold
characters. Observe that both algorithms have similar performance on those graphs where the results are
available. However, Paris is much faster than the spectral algorithm, as shown by Table 6 (for each algorithm,
the initial load or copy of the graph is not included in the running time; running times exceeding 1 hour are
not shown). Paris is even faster than Louvain in most cases, while providing a much richer information on
the graph.

Graph Spectral Paris
OpenStreet 0.0103 0.0102
OpenFlights 0.125 0.130
Facebook 0.0479 0.0469
Wikipedia Schools 0.452 0.402
Amazon − 0.0297
DBLP − 0.110
Twitter − 0.0908
Youtube − 0.185
Wikipedia Humans − 131
Google − 0.0121

Table 5: Performance comparison of a spectral algorithm and Paris in terms of normalized Dasgupta’s cost.

Graph Spectral Louvain Paris
OpenStreet 0.86s 0.19s 0.17s
OpenFlight 0.51s 0.31s 0.33s
Facebook 5.9s 1s 0.71s
Wikipedia Schools 16s 2.2s 1.5s
Amazon − 45s 43s
DBLP − 52s 31s
Twitter − 35s 21s
Youtube − 8 min 16 min 30s
Wikipedia Humans − 2 min 30s 2 min 10s
Google − 3 min 50s 1 min 50s

Table 6: Comparison of running times.

12

8 Conclusion

We have proposed an agglomerative clustering algorithm for graphs based on a reducible distance between
clusters. The algorithm captures the multi-scale structure of real graphs. It is parameter-free, fast and
memory-efficient. In the future, we plan to work on the automatic extraction of clusterings from the
dendrogram, at the most relevant resolutions.

References

[Arenas et al., 2008] Arenas, A., Fernandez, A., and Gomez, S. (2008). Analysis of the structure of complex
networks at different resolution levels. New journal of physics, 10(5).

[Blondel et al., 2008] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment.

[Chang et al., 2011] Chang, C.-S., Hsu, C.-Y., Cheng, J., and Lee, D.-S. (2011). A general probabilistic
framework for detecting community structure in networks. In INFOCOM, 2011 Proceedings IEEE, pages
730–738. IEEE.

[Clauset et al., 2008] Clauset, A., Moore, C., and Newman, M. E. (2008). Hierarchical structure and the
prediction of missing links in networks. Nature, 453(7191).

[Cohen-Addad et al, 2018] Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., and Mathieu, C. (2018).
Hierarchical clustering: Objective functions and algorithms In Proceedings of ACM-SIAM Symposium on
Discrete Algorithms.

[Dasgupta, 2016] Dasgupta, S. (2016) A cost function for similarity-based hierarchical clustering. In
Proceedings of ACM symposium on Theory of Computing.

[Donetti and Munoz, 2004] Donetti, L. and Munoz, M. A. (2004). Detecting network communities: a new
systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment, 2004(10).

[Fortunato and Barthelemy, 2007] Fortunato, S. and Barthelemy, M. (2007). Resolution limit in community
detection. Proceedings of the National Academy of Sciences, 104(1).

[Huang et al., 2010] Huang, J., Sun, H., Han, J., Deng, H., Sun, Y., and Liu, Y. (2010). Shrink: A structural
clustering algorithm for detecting hierarchical communities in networks. In Proceedings of the 19th ACM
International Conference on Information and Knowledge Management, CIKM ’10, New York, NY, USA.
ACM.

[Lambiotte et al., 2014] Lambiotte, R., Delvenne, J.-C., and Barahona, M. (2014). Random walks, Markov
processes and the multiscale modular organization of complex networks. IEEE Transactions on Network
Science and Engineering.

[Lancichinetti and Fortunato, 2011] Lancichinetti, A. and Fortunato, S. (2011). Limits of modularity maxi-
mization in community detection. Physical review E, 84(6).

[Lancichinetti et al., 2009] Lancichinetti, A., Fortunato, S., and Kertész, J. (2009). Detecting the overlapping
and hierarchical community structure in complex networks. New Journal of Physics, 11(3).

[Leskovec and Krevl, 2014] Leskovec, J., and Krevl, A. (2014). SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[Luxburg, 2007] Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing.

13

http://snap.stanford.edu/data

[Lyzinski et al., 2017] Lyzinski, V., Tang, M., Athreya, A., Park, Y., and Priebe, C. E. (2017). Community
detection and classification in hierarchical stochastic blockmodels. IEEE Transactions on Network Science
and Engineering, 4(1).

[Murtagh and Contreras, 2012] Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical clustering:
an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.

[Newman, 2016] Newman, M. (2016). Community detection in networks: Modularity optimization and
maximum likelihood are equivalent. arXiv preprint arXiv:1606.02319.

[Newman, 2004] Newman, M. E. (2004). Fast algorithm for detecting community structure in networks.
Physical review E, 69(6).

[Newman and Girvan, 2004] Newman, M. E. and Girvan, M. (2004). Finding and evaluating community
structure in networks. Physical review E.

[Pons and Latapy, 2005] Pons, P. and Latapy, M. (2005). Computing communities in large networks using
random walks. In International symposium on computer and information sciences. Springer.

[Reichardt and Bornholdt, 2006] Reichardt, J. and Bornholdt, S. (2006). Statistical mechanics of community
detection. Physical Review E, 74(1).

[Ronhovde and Nussinov, 2009] Ronhovde, P. and Nussinov, Z. (2009). Multiresolution community detection
for megascale networks by information-based replica correlations. Physical Review E, 80(1).

[Sales-Pardo et al., 2007] Sales-Pardo, M., Guimera, R., Moreira, A. A., and Amaral, L. A. N. (2007).
Extracting the hierarchical organization of complex systems. Proceedings of the National Academy of
Sciences, 104(39).

[Tremblay and Borgnat, 2014] Tremblay, N. and Borgnat, P. (2014). Graph wavelets for multiscale community
mining. IEEE Transactions on Signal Processing, 62(20).

[Ward, 1963] Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the
American statistical association.

[West and Leskovec, 2012] West, R. and Leskovec, J. (2012). Human wayfinding in information networks. In
Proceedings of the 21st international conference on World Wide Web, ACM.

[West et al., 2009] West, R., Pineau, J., and Precup, D. (2009). Wikispeedia: An online game for inferring
semantic distances between concepts. In IJCAI.

14

	Introduction
	Related work
	Notation
	Node pair sampling
	Clustering algorithm
	Link with modularity
	Experiments
	Conclusion

