Ultigesture: a wristband-based platform for continuous gesture control in healthcare - Archive ouverte HAL
Article Dans Une Revue Smart Health Année : 2019

Ultigesture: a wristband-based platform for continuous gesture control in healthcare

Résumé

In recent years, wearable sensor-based gesture recognition is proliferating in the field of healthcare. It could be used to enable remote control of medical devices, contactless navigation of X-ray display and Magnetic Resonance Imaging (MRI), and largely enhance patients' daily living capabilities. However, even though a few commercial or prototype devices are available for wearable gesture recognition, none of them provides a combination of (1) fully open API for various healthcare application development, (2) appropriate form factor for comfortable daily wear, and (3) affordable cost for large scale adoption. In addition, the existing gesture recognition algorithms are mainly designed for discrete gestures. Accurate recognition of continuous gestures is still a significant challenge, which prevents the wide usage of existing wearable gesture recognition technology. In this paper, we present Ultigesture wristband, a hardware/software platform for gesture recognition and remote control. Due to its affordability, small size, and comfortable profile, Ultigesture wristband is an attractive option for mass consumption. Ultigesture wristband provides full open API access for third party research and application development. In addition, it employs a novel continuous gesture segmentation and recognition algorithm, which accurately and automatically separates hand movements into segments, and merges adjacent segments if needed, so that each gesture only exists in one segment. Experiments with human subjects show that the recognition accuracy is 99.4% when users perform gestures discretely, and 94.6% when users perform gestures continuously
In recent years, wearable sensor-based gesture recognition is proliferating in the field of healthcare. It could be used to enable remote control of medical devices, contactless navigation of X-ray display and Magnetic Resonance Imaging (MRI), and largely enhance patients' daily living capabilities. However, even though a few commercial or prototype devices are available for wearable gesture recognition, none of them provides a combination of (1) fully open API for various healthcare application development, (2) appropriate form factor for comfortable daily wear, and (3) affordable cost for large scale adoption. In addition, the existing gesture recognition algorithms are mainly designed for discrete gestures. Accurate recognition of continuous gestures is still a significant challenge, which prevents the wide usage of existing wearable gesture recognition technology. In this paper, we present Ultigesture wristband, a hardware/software platform for gesture recognition and remote control. Due to its affordability, small size, and comfortable profile, Ultigesture wristband is an attractive option for mass consumption. Ultigesture wristband provides full open API access for third party research and application development. In addition, it employs a novel continuous gesture segmentation and recognition algorithm, which accurately and automatically separates hand movements into segments, and merges adjacent segments if needed, so that each gesture only exists in one segment. Experiments with human subjects show that the recognition accuracy is 99.4% when users perform gestures discretely, and 94.6% when users perform gestures continuously.
Fichier non déposé

Dates et versions

hal-01884725 , version 1 (01-10-2018)

Identifiants

Citer

Hongyang Zhao, Shuangquan Wang, Gang Zhou, Daqing Zhang. Ultigesture: a wristband-based platform for continuous gesture control in healthcare. Smart Health, 2019, 11, pp.45 - 65. ⟨10.1016/j.smhl.2017.12.003⟩. ⟨hal-01884725⟩
64 Consultations
0 Téléchargements

Altmetric

Partager

More