Espaces adéliques quadratiques - Archive ouverte HAL
Article Dans Une Revue Mathematical Proceedings of the Cambridge Philosophical Society Année : 2017

Espaces adéliques quadratiques

Eric Gaudron
Gaël Rémond

Résumé

We study quadratic forms defined on an adelic vector space over an algebraic extension K of the rationals. Under the sole condition that a Siegel lemma holds over K, we provide height bounds for several objects naturally associated to the quadratic form, such as an isotropic subspace, a basis of isotropic vectors (when it exists) or an orthogonal basis. Our bounds involve the heights of the form and of the ambient space. In several cases, we show that the exponents of these heights are best possible. The results improve and extend previously known statements for number fields and the field of algebraic numbers.
Fichier non déposé

Dates et versions

hal-01882097 , version 1 (26-09-2018)

Identifiants

Citer

Eric Gaudron, Gaël Rémond. Espaces adéliques quadratiques. Mathematical Proceedings of the Cambridge Philosophical Society, 2017, 162 (02), pp.211 - 247. ⟨10.1017/S0305004116000438⟩. ⟨hal-01882097⟩
51 Consultations
0 Téléchargements

Altmetric

Partager

More