Improved Routing on the Delaunay Triangulation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Improved Routing on the Delaunay Triangulation

Résumé

A geometric graph G = (P,E) is a set of points in the plane and edges between pairs of points, where the weight of the edge is equal to the Euclidean distance between the points. In k-local routing we find a path through G from a source vertex s to a destination vertex t, using only knowledge of the present location, the locations of s and t, and the k-neighbourhood of the current vertex. We present an algorithm for 1-local routing on the Delaunay triangulation, and show that it finds a path between a source vertex s and a target vertex t that is not longer than 3.56|st|, improving the previous bound of 5.9.

Mots clés

Fichier principal
Vignette du fichier
bestchord.pdf (1.35 Mo) Télécharger le fichier
Vignette du fichier
exampleRouting.png (36.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Loading...

Dates et versions

hal-01881280 , version 1 (12-10-2018)

Identifiants

Citer

Nicolas Bonichon, Prosenjit Bose, Jean-Lou de Carufel, Vincent Despré, Darryl Hill, et al.. Improved Routing on the Delaunay Triangulation. ESA 2018 - 26th Annual European Symposium on Algorithms, Aug 2018, Helsinki, Finland. ⟨10.4230/LIPIcs.ESA.2018.22⟩. ⟨hal-01881280⟩
380 Consultations
189 Téléchargements

Altmetric

Partager

More