Levi-Kahler reduction of CR structures, products of spheres, and toric geometry
Résumé
We study CR geometry in arbitrary codimension, and introduce a process, which we call the Levi-Kahler quotient, for constructing Kahler metrics from CR structures with a transverse torus action. Most of the paper is devoted to the study of Levi-Kahler quotients of toric CR manifolds, and in particular, products of odd dimensional spheres. We obtain explicit descriptions and characterizations of such quotients, and find Levi-Kahler quotients of products of 3-spheres which are extremal in a weighted sense introduced by G. Maschler and the first author.