Velocity Extension for the Level-set Method and Multiple Eigenvalues in Shape Optimization
Résumé
In the context of structural optimization by the level-set method, we propose an extension of the velocity of the underlying Hamilton-Jacobi equation. The gradient method is endowed with a Hilbertian structure based on the H 1 Sobolev space. Numerical results for compliance minimization and mechanism design show a strong improvement of the rate of convergence of the level-set method. Another important application is the optimization of multiple eigenvalues
Fichier principal
VELOCITY_EXTENSION_FOR_THE_LEVEL_SET_METHOD_AND_MULTIPLE_EIGENVALUES_IN_SHAPE_OPTIMIZATION.pdf (3.68 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...