Velocity Extension for the Level-set Method and Multiple Eigenvalues in Shape Optimization - Archive ouverte HAL Access content directly
Journal Articles SIAM Journal on Control and Optimization Year : 2006

Velocity Extension for the Level-set Method and Multiple Eigenvalues in Shape Optimization

Abstract

In the context of structural optimization by the level-set method, we propose an extension of the velocity of the underlying Hamilton-Jacobi equation. The gradient method is endowed with a Hilbertian structure based on the H 1 Sobolev space. Numerical results for compliance minimization and mechanism design show a strong improvement of the rate of convergence of the level-set method. Another important application is the optimization of multiple eigenvalues
Fichier principal
Vignette du fichier
VELOCITY_EXTENSION_FOR_THE_LEVEL_SET_METHOD_AND_MULTIPLE_EIGENVALUES_IN_SHAPE_OPTIMIZATION.pdf (3.68 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01880854 , version 1 (25-09-2018)

Identifiers

Cite

Frédéric de Gournay. Velocity Extension for the Level-set Method and Multiple Eigenvalues in Shape Optimization. SIAM Journal on Control and Optimization, 2006, 45 (1), pp.343 - 367. ⟨10.1137/050624108⟩. ⟨hal-01880854⟩
50 View
103 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More