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VELOCITY EXTENSION FOR THE LEVEL-SET METHOD AND
MULTIPLE EIGENVALUES IN SHAPE OPTIMIZATION∗

FRÉDÉRIC DE GOURNAY†

Abstract. In the context of structural optimization by the level-set method, we propose an
extension of the velocity of the underlying Hamilton–Jacobi equation. The gradient method is
endowed with a Hilbertian structure based on theH1 Sobolev space. Numerical results for compliance
minimization and mechanism design show a strong improvement of the rate of convergence of the
level-set method. Another important application is the optimization of multiple eigenvalues.
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1. Introduction. Optimal design of elastic structures has been widely studied
and many different numerical methods are used to solve this problem. Most of the
existing methods can be divided into two main classes: topology optimization which
optimizes a density of material in each cell and geometric optimization which moves
the boundary of the domain.

The most recent topology method, the homogenization method and its variants
(power-law method or SIMP method), may be considered quite classical in view of
the number of publications (see, e.g., [1], [2], [6], [8], [7], [12]). The homogenization
method seems the most promising because it is independent with respect to initial-
ization and because it gives a strong mathematical result of the existence of solution.
Sadly this method bears the difficulty of handling quite badly eigenvalue problems
where apparitions of so-called fictitious-material modes prevent stable numerical com-
putation. Another problem is that topology methods give optimal shapes that are
composite. Penalization methods allow one to project the composite shape on a clas-
sical shape (a black-and-white design).

The problem of fictitious modes is naturally solved with the geometric methods
where the shape is clearly identified and the void cannot generate fictitious modes.

The major drawback of geometric methods is their dependency with respect to
initialization. Even the most recent level-set method ([4], [5], [34]) is very sensitive
to initialization although the topology can change. In order to avoid this problem, a
method of topology optimization, the bubble method (or topological gradient method
[16], [17], [31], [32]), has been recently coupled with geometric optimization (see [3],
[11]). Another recent advance in that field has been led by Nazarov and Sokolovski
[23], but numerical use of this method is still not done.

We wish here to correct the so-called void problem that arises when using the
level-set algorithm. This problem is generated by the weak material approximation
that gives rise to a negative velocity for advecting the shape in the void. The void
problem slows down the algorithm when the mesh is refined.
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The void problem is presented in section 3, and the chosen solution is presented in
section 4. The method mainly consists of applying the ∆−1 operator to the velocity
which is costless. This method allows one to regularize and to extend and gives a
local Hilbertian structure (see the discussion in section 4.2). Numerical results are
presented in sections 4.3–4.7; they compare the new method with the previous one
and show strong improvements of the level-set algorithm.

The method also has made it possible to deal with the problem of optimizing
an eigenvalue when its multiplicity is greater than 1. Theoretical differentiation of
the eigenvalue is made in section 5. As can be expected from theory on eigenvalue
differentiation, the first eigenvalue is directionally differentiable with respect to shape
variation, even when this eigenvalue is multiple. The algorithm that optimizes the
first eigenvalue is detailed in section 5.3. It strongly relies on the local Hilbertian
structure given by velocity regularization. Indeed, because of this local Hilbertian
structure, the differential gives rize to a gradient and therefore to a steepest descent.
We show that the choice of the steepest descent is a semidefinite program in low
dimension that is easily solved. Some numerical results are presented in section 6.

The method used for optimizing multiple eigenvalues can be extended to other
criteria that are not differentiable as the robust compliance criterion in the sense of
[13]. The method of velocity regularization presented here is an adaptation of [10],
[26], [21]. It is a standard issue in numerical computation.

2. The level-set method in shape optimization.

2.1. Eigenvalue maximization. We set our model problem in linearized elas-
ticity. Let Ω ⊂ Rd (d = 2 or 3) be a bounded open set occupied by a linear isotropic
elastic material with Hooke’s law A0. Recall that, for any symmetric matrix ξ, A0 is
defined by

A0ξ = 2µξ + λ
(
Trξ
)
Id,

where µ and λ are the Lamé coefficients of the material. The boundary of Ω is made
of two disjoint parts

(1) ∂Ω = ΓN ∪ ΓD,

with Dirichlet boundary conditions on ΓD and Neumann boundary conditions on ΓN .
The spectral problem is to find an eigenvalue γ and an eigenvector u �= 0 such that

(2)



−div (A e(u)) = γρu in Ω,

u = 0 on ΓD,(
Ae(u)

)
n = 0 on ΓN ,

where ρ is a scalar field on Ω that represents the material density (typically ρ is equal
to 1 on Ω).

It is well known that Sp(Ω) the set of eigenvalues is a countable set of positive
numbers that tends to infinity. The smallest eigenvalue γ1(Ω) = min Sp(Ω) can then
be defined.

A classical way of improving the rigidity of a structure is to maximize the first
eigenfrequency. Thus, a natural objective function to be minimized is

(3) L(Ω) = −γ1(Ω) + η|Ω|,

where η is a given Lagrange multiplier for a volume constraint. We want to minimize
L with respect to Ω with a constraint that Ω ⊂ D, where D is a given domain of Rd.
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2.2. Classical algorithm. The works [24], [29], or [5] give an extensive ex-
planation of the level-set method. Only the main ideas are to be reviewed in this
section.

As described in [4], when the dimension of the eigenspace associated to γ1 is
equal to 1, the above functional L(Ω) is differentiable with respect to variation of the
domain and the geometrical shape optimization method can be applied. It reads, as
follows:

1. Calculation of the gradient. Let Ωk be the domain at iteration k. As-
suming that γ1(Ωk) is simple, for a given θ ∈W 1,∞(D;D) define

(Id+ θ) ◦ Ωk = {x+ θ(x) with x ∈ Ωk}.

Prove that L((Id+ θ) ◦Ωk) is differentiable with respect to θ at the point θ = 0. The
value of L′, the differential at the point 0 is given by

L′(θ) =
∫
∂Ωk

(θ · n)(−v + η)(4)

with
{
v = Ae(u) : e(u)− γ1ρu · u on ΓkN ,
v = −Ae(u) : e(u) on ΓkD,

(5)

where u is an eigenvector normalized by
∫

Ωk
ρu · u = 1 which is, up to a change of

sign, by assumption, unique and where n is the outer normal of Ωk.
2. Calculation of a descent direction. Choose θk such that L′(θk) < 0, and

let Ωk+1 = (Id+ tθk) ◦ Ωk, where t is the step of the gradient method.
The level-set method is a geometrical shape optimization method where the do-

mains Ωk are represented through functions φk defined on D in the following way:
x ∈ Ωk ⇐⇒ φk(x) < 0. Such a φk is said to be “a level set function of Ωk.” Of course
for a given domain, the associated level-set functions are not unique.

The changes of topology are then handled in a very simple way (see [5] for ex-
tensive explanations of numerical advantages). The method relies on the following
lemma.

Lemma 2.1. If φk is a level-set function of Ωk, define φk+1 as

φk+1 − φk + t(θk · n)|∇φk| = 0.

Then there exists an O(t2) such that φk+1 + O(t2) is a level-set function for the
domains Ωk+1 = (Id+ tθk) ◦ Ωk.

Thus, the following scheme for choosing φk+1 is the most commonly used:

φ(0) = φk,
∂φ

∂t
+ V ∗|∇φ| = 0,

φk+1 = φ(T ),(6)

where T > 0 is the step of the gradient method and V ∗ is the descent direction chosen
according to the calculation (4) of the differential of J . Defining V ∗ = v− η (v being
defined in (4)) is the most commonly used choice; we will call this choice the natural
extension method. The goal of this paper is to find a different way of defining V ∗.

Remark 2.2. In order to avoid multiple definitions of V ∗in the natural extension
method, it is supposed that the Dirichlet part of the boundary is fixed and that the
v used everywhere in the domain is the one defined for ΓN .
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3. The weak material approximation. The stiffness matrix that corresponds
to the linear operator of elasticity is not defined on the nodes that does not belong
to Ω, i.e., on x ∈ D such that φ(x) > 0. In other words, this matrix is not invert-
ible. In order to avoid this problem, the so-called weak material (or ersatz material)
approximation consists of fixing Hooke’s law A and the material density ρ as

A = A0 and ρ = 1 in Ω
A = εA0 and ρ = εα outside Ω

with a small parameter ε and α ≥ 1. The fictitious modes are avoided by setting
α = ∞. In the continuous case, it has been proven (see [28]) that the eigenvector ũ
calculated by using the ersatz material approximation is equal (at first order in ε) to
the desired eigenvector u introduced in (2). In D \ Ω ũ is the lifting of the Dirichlet
condition ũ = u on ∂Ω (at first order in ε).

Recalling that the Dirichlet part of the boundary of ∂Ω has been fixed (see Remark
2.2), v − η = Ae(u) : e(u)− γ1ρu · u− η is defined everywhere on D, and the natural
extension method consists of defining V ∗ = Ae(u) : e(u)− γ1ρu · u− η on every cell.

This nevertheless raises a problem: since u is everywhere of order ε0, then
Ae(u) : e(u) is of order ε outside Ω which means that the velocity extension is al-
most equal to −η outside the domain and makes it very difficult for the shape to
increase its volume. Even if the descent step T is increased in order to speed up the
method, the parts of the shape where there is a need to decrease the volume will move
faster than the parts of the shape where there is a demand on increasing the volume.

In numerical result, it can be seen that between each computation of the eigen-
value, the level-set method cannot move ∂Ω of more than one cell away from the
original boundary when it wants to improve the volume. This leads to a drastically
increasing computational time with mesh-refinement.

This remark is true, of course, for every objective function and not only for the
minimization of the first eigenvalue.

4. Velocity regularization by the Hilbertian method.

4.1. Definition of the Hilbertian method. We will suppose that the domain
Ω has enough regularity so that v(·, ·) defined in (4) belongs to H−1/2(∂Ω). Even
if the optimal domain may possibly be irregular, physical and numerical intelligence
tells that throughout optimization v(·, ·) has the required regularity but mathematical
proof of this fact is still lacking. Let us first define a scalar product.

Definition 4.1. For a ∈ R∗+, define the following scalar product on H1(D):

(u,w)H1 =
∫
D

a∇u · ∇w + uw

with the associated norm ‖ · ‖H1 .
The velocity V ∗ in the Hamilton–Jacobi equation (6) is chosen as the unique

solution to

(7)
∫
∂Ω
V ∗(−v + η) = min

V ∈H1(D)

‖V ‖H1=1

∫
∂Ω
V (−v + η),

where v is the differential defined in proposition (4) and Ω is the actual working
domain.
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Omega

void

Fig. 1. Two merging parts of the boundary leads to a nonregular vector field as seen as a
distribution on D.

4.2. Advantages of the method.
Scalar versus vector. We choose to extend the normal velocity which is a

scalar field, i.e., if θ is the vector field that advects the domain, its normal velocity
is equal to θ · n on the boundary of the domain. Seen as a distribution over D, the
normal velocity is more regular than the vector velocity. A good example is when two
parts of the boundary want to merge: θ ·n is positive on the two parts and θ changes
orientation. This situation gets worse at the next step of the algorithm (see Figure
1). That is why the normal velocity is extended and not the vector velocity.

How to compute V ∗. The problem of finding V ∗ is not difficult. Let V̄ be the
unique solution to

(V̄ ,X)H1 =
∫
∂Ω
X(−v + η) ∀X ∈ H1(D),

where (·, ·)H1 is the scalar product of Definition 4.1. Then V ∗ = − V̄
‖V̄ ‖H1

and the
inversion of the matrix that corresponds to the scalar product (·, ·)H1 has to be done
only once in the optimization process.

Extension, regularization, and Hilbertian structure. Three different goals
are sought in the Hilbertian extension of the velocity.

First, the formula for the differential of L gives a velocity that makes sense only
on the boundary of the domain, and the Hamilton–Jacobi equation (6) needs a speed
defined everywhere on the domain or else the algorithm cannot move the boundary
of more than one cell during optimization. This is the extension issue.

Secondly, the velocity is regularized by being diffused with the scalar product
defined in Definition 4.1. This is the regularization issue. It is expected to increase
the accuracy of the algorithm and is a standard issue in optimization problems (see,
e.g., [26], [10], [21]).

Thirdly, the problem is endowed with a Hilbertian structure, and we work with
gradient-type methods. This issue will be developed later in section 5.

Hilbertian extension versus other extensions. The most natural way to
extend the velocity outside ∂Ω would have been to extend v − η according to the
normal of ∂Ω by a front-propagating-type method such as the fast-marching method
described in [25]. This method does not endow the space with a Hilbertian structure.
Neither does it regularize the velocity.

V ∗ is indeed an extension. Because the scalar product diffuses the source
term, the velocity is now defined everywhere on D, and the typical problem of null
velocity in the void that raises with the natural extension method is now cured.

V ∗ is indeed a regularization. V ∗, the speed used in the Hilbertian extension
method, is more regular than v − η, the speed used in the natural extension method
as can be seen in the following formal derivation.
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Fig. 2. Boundary conditions for a two-dimensional (2d) cantilever (the black zone is heavier
and not subject to optimization).

If v belongs to anHs(D), thenX �→
∫
∂ΩX(−v+η) is a linear form onH−s+1/2(D),

and V ∗ belongs to an Hs+3/2(D) by elliptic regularity on the very smooth domain D.
Indeed V ∗ is obtained by operating an inverse Laplacian on the distribution (on D)
X �→

∫
∂ΩX(−v + η) and so gains two derivatives.

Consistency of the extension. This algorithm could be seen as a gradient-
type algorithm if there were a vector field θ∗ ∈W 1,∞(D;D) such that θ∗ · n = V ∗ on
∂Ω. Two hypotheses would then be needed: a certain regularity on V ∗ and a certain
regularity of the domain Ω itself.

In order to ensure regularity of V ∗, a scalar product on Hp, p ≥ 1, could have
been used instead of a scalar product on H1. In this case, formally, V ∗ would have
2p − 1/2 more derivatives in L2 than v. But numerical computation of V ∗ may be
quite difficult. Indeed, the computation of the matrix of the scalar product of Hp

needs finite elements that are chosen according to p.
The extension parameters. The coefficient a characterizes the diffusion of

v− η in the sense that setting it small compared to 1 will lead to a solution V ∗ which
is pointwise almost equal to v−η on ∂Ω or equal to 0 outside ∂Ω. It must be set small
enough so that a big value of |v − η| on one part of the boundary does not interfere
too much with the values of v− η on the other parts of the boundary. But it must be
set big enough in order to diffuse the value of v − η outside the boundary of Ω.

4.3. Numerical example: Eigenvalues of a cantilever. We study a medium-
cantilever problem. The working domain is a 2× 1 rectangle, with zero displacement
condition on the left side and a small square region at the middle of the right side (see
Figure 2) which is 500 times heavier and not subject to optimization. This heavier
mass allows one to avoid trivial shapes (see Figure 3). The Young modulus of the
material is set to 1, the Poisson ratio ν to 0.3, and the Lagrange multiplier to 7×10−2.
In the void, the ersatz material has a Young modulus set to 10−5 and a density ρ set
to 0. The mesh is refined alternatively in each direction by a factor of 2, and the
number of transport iterations is adequately increased at each mesh refinement (see
the table below).

Explanation of Table 1. Table 1 lists, for different meshes, the number of
transport iterations used for each optimization step in the Hamilton–Jacobi equation,
the average computed time used per iteration step of the gradient method, and the
global computing time. The number of transport iterations is shown for the Hilbertian
method only. The number of transport iterations for the natural method is 16 times
the number of transport iterations of the Hilbertian method. This explains why the
average time per iteration of the gradient algorithm is bigger for the natural method
than for the Hilbertian. The last column is the global computing time for obtaining
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Fig. 3. Initialization and optimal shape for the first eigenvalue of a cantilever.

Table 1

Data of the numerical test.

Mesh No of

transport

Time per iteration

Hilbertian / natural

Global time

Hilbertian / natural

81× 41
161× 81
321× 161

16
32
64

1.46 / 1.62
9.35 / 11.37
72.17 / 94.91

30.68 / 50.13
233.87 / 330.01
2237.2 / 2657.63

41× 41
81× 81
161× 161

14
28
56

0.74 / 0.84
4.46 / 6.19
38.50 / 46.61

13.26 / 22.6
120.62 / 136.1
1116.57 / 1771.44

10 20 305 15 25

0

0.001

0.002

-0.0005

0.0005

0.0015

0.0025

Hilbertian method

Natural method

Finest mesh of the 
Hilbertian method

Hilbertian method
Coarsest mesh of the    

Fig. 4. Mesh-refinement influence on the velocity for the natural extension (left) and the
Hilbertian extension (right).

the optimal shape. The Hilbertian method takes the same amount of time as the
natural method to obtain the optimal shape but only because it is more accurate. As
can be seen in Figure 4, the convergence curves of the Hilbertian method are indeed
better than the convergence curves of the natural method. Time is given in seconds.

Explanation of Figure 4. There is two sets of curves in Figure 4. The better
ones are obtained with the Hilbertian method. It appears that the more the mesh
is refined, the better the optimal shape is, even if, when the mesh is refined, the
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Fig. 5. Mesh-refinement influence on the natural extension (left) and the Hilbertian extension
(right).

Fig. 6. Initialization and optimal shape of the cantilever.

decreasing of the smallest eigenvalue leads to an increase of the criterion. This is
easily explained by a better accuracy on the optimal shape itself.

Remark 4.2. In order to prove mesh-consistency of the algorithm and to have
comparable curves in Figure 4, the optimal shape has to be the same when the mesh
is changed. Thus those examples are chosen so that there is no possibility for the
algorithm to create thin structures when the mesh is refined. This explains why there
are a very few holes in the initialization. It is well known that the level-set algorithm
can produce more complicated structures.

4.4. Numerical example: The compliance of the cantilever. We per-
formed our new velocity extension method on the well-known cantilever problem
which is fixed on the left wall and supports a unit vertical point load in the mid-
dle of the right wall. The compliance is here optimized. The working domain size is
2 × 1. The Young modulus is set to 1, and the Poisson ratio to 0.3. The Lagrange
multiplier is set to η = 100.

Optimization is performed for several finer meshes, and the number of transport
iterations is multiplied by 2 as each square of the mesh is cut into 4 squares. For the
finest mesh (321× 161) that corresponds to 51200 elements; the number of transport
iterations is equal to 128 for the natural extension and to 16 for the Hilbertian. As a
result, the Hilbertian extension is really quicker.

Mesh-refinement influence. The curves in Figure 5 show that the Hilber-
tian method is less sensitive to mesh-refinement than the natural method. Because
there are parts of the boundary that have to increase the volume (one of them is
circled in Figure 6) and the natural extension method has problems to improve these
parts as was said in section 3, the natural extension method is sensitive to mesh-
refinement. In Figure 4 there was no such demand on improving the volume and the
mesh-independence of the Hilbertian method was less obvious.
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Dirichlet nodes

input forcesoutput 

Fig. 7. The definition of the 2d gripping mechanism and its initialization.

4.5. Numerical example: A two-dimensional (2d) gripping-mechanism.
On a 1.2×3.2 rectangle meshed with 241×641 nodes, we give a numerical example for
minimizing the least square of a prescribed displacement. This example was given by
the Comissariat à l’Energie Atomique for the design of a grip (see [9]). The objective
function is

(8) Jlse(Ω) =
∫

Ω
k(x)|u(x)− u0(x)|2,

where u is the displacement obtained by a given set of forces, u0 is a prescribed given
displacement, and k is a scalar field that characterizes the zone of interest.

The ponderation k is equal to 10 on the left black box in Figure 7 (left), is equal
to 1 on the right black box, and is equal to 0 elsewhere. The prescribed displacement
u0 is equal to (0,±1) on the left black box, and (0, 0) on the right box. Enforcing
u to be close to 0 where the force is input allows one to ensure the stiffness and the
connectivity of the structure. These black boxes are not subject to optimization.

A force of modulus 1 N is applied in the x-direction on the middle of the left, and
a uniform pressure which represents a total force of modulus 5 × 10−2 N is applied
between the jaws of the mechanism in order to force the mechanism to hold objects.
The prescribed displacement is located on the black box on the left as shown in
Figure 7. The Young modulus is set to 1, the Poisson ratio to 0.3, and there is a small
Lagrange multiplier of a volume constraint of value 0.05. This Lagrange multiplier
helps remove parts of the boundary that are useless.

This is a typical problem where an adjoint is needed. For some reason that is
not completely understood, the ratio of the weak material (the factor ε in section 3)
cannot be set too low (typically it must be at least 1 percent of the strong material)
or the algorithm will not work. One of the explanations that may be given is the
tendency of the shape to create hinges. The algorithm then concentrates on the
hinges only, ignoring the rest of the shape, and it is believed it is then stuck in a local
minimum. If the ratio of the weak material is high, hinges are less efficient and the
previous problem is avoided.

Optimization must then be made in two steps. First the shape is optimized with
a ratio of the weak material equal to 1 percent. The optimal shape is then reopti-
mized with a smaller ratio (10−5 in this numerical case). In the second optimization
procedure, the displacement and the adjoint state are calculated with a more accurate
precision which leads to a better precision of the shape-derivative.

In Figure 8 (left), it may seem that the Hilbertian method is less efficient than
the natural method. This is explained by the lack of precision in the computation
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0 10050 150

1.5

1.6

1.55

1.65 Hilbertian extension
Natural extension   

0 100 200 30050 150 250
0.6

0.7

0.8

0.9

1

1.1

1.2
Hilbertian extension
Natural extension   

Fig. 8. Evolution of the objective function for the first step (left) with a ratio for the weak
material equal to 0.01 and the second step with a ratio of 10−5 (right).

Fig. 9. Optimal shape for the Hilbertian method (left) and the natural method (right) at the
end of the first step of optimization.

Fig. 10. Optimal shape for the Hilbertian method (left) and the natural method (right) at the
end of the second step of optimization.

of the shape-derivative in the first step of the algorithm. But it is also explained by
the lack of precision of the computation of the criterion during the first step of the
algorithm. Indeed when the two shapes of Figure 9 (obtained with ε = 10−2) are
computed using ε = 10−5, the Hilbertian shape is the better one.

Remark 4.3. The optimal shape for the natural extension method has less volume
than the one for the Hilbertian extension (see Figures 10 and 11) it is a numerical
validation of the problem raised in section 3.

4.6. Numerical example: More 2d mechanisms. We briefly present here
some more 2d mechanisms: namely, a negative Poisson modulus cell (Figures 12 to
14) and a force inverter (Figures 15 to 17). These examples are standards of shape
optimization problems, and their description can be found in [8]. In order to ensure
stiffness of the structures, a small pressure load is applied where the displacement
is optimized (on the right black box of Figure 15 for the force inverter and at the
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Fig. 11. Optimal shape displacement.
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Fig. 12. The Negative Poisson modulus problem and its deformed solution.
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Fig. 13. Negative Poisson modulus’s evolution of the objective function at the first step (left)
with a ratio for the weak material equal to 0.01 and the second step with a ratio of 10−5 (right).

top and bottom of Figure 12 for the negative Poisson modulus mechanism). At the
location of the input forces (left black box for the force inverter or the left and right
walls for the negative Poisson modulus mechanism), the displacement is enforced to
be close to zero in order to ensure connectivity of the shapes. Optimization is made in
two steps like the 2d grip of section 4.5, and the behavior of the Hilbertian extension
with respect to the natural extension is comparable.

4.7. Numerical example: A three-dimensional (3d) gripping mecha-
nism. The objective function is defined by (8) in section 4.5. The working domain is
a 3× 2× 6 rectangle. A uniform pressure load is applied on the plane x = 3, and the
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Fig. 14. Negative Poisson modulus’s optimal shape for the Hilbertian method (left) and the
natural method (right) at the end of optimization.
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Fig. 15. The force inverter problem and its deformed solution.
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Fig. 16. Force inverter’s evolution of the objective function for the first step (left) with a ratio
for the weak material equal to 0.01 and the second step with a ratio of 10−5 (right).

prescribed displacement is localized on a box at the opposite side (see Figure 18 where
a cross-section at y = 0 is shown). A uniform pressure load (of order 60 percent of the
one on the plane x = 3) is also imposed between the jaws of the mechanism so that
this mechanism is designed to hold and grip. The Poisson ratio is 0.3, and the Young
modulus is 1. The Lagrange multiplier is set to 3, and the mesh used is 31× 21× 61.
The ratio of the weak material is set to 10−5. There is no need here to perform the
2-step optimization of section 4.5. The reason why things seems to be simpler in 3d
is that the changes of topology and the hinges are not of the same nature as in 2d;
consequently, it is believed that throughout the process of optimization, the objective
function is more regular in 3d.
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Fig. 17. Force inverter’s optimal shape for the Hilbertian method (left) and the natural method
(right) at the end of optimization.
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Fig. 18. The problem of the 3d gripping mechanism.

Fig. 19. Optimal shape for the Hilbertian method (left) and the natural method (right) (isovalue
0 of the level-set is shown).

5. Optimizing multiple eigenvalues. The development above for optimizing
the first eigenvalue stands only when this eigenvalue is of multiplicity equal to 1. When
this is not the case, there is no more differentiability of the first eigenvalue with respect



14 FRÉDÉRIC DE GOURNAY

0 10 20 30 40 50 60 70 80 90 100
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Fig. 20. Objective function (left) and displacement of the Hilbertian shape (right) (density of
material ≥ 0.3 is shown).

to θ, and the above method cannot be applied. Nevertheless it has been proven that
L is directionally differentiable. The velocity extension which endows the space with
a Hilbertian structure allows one to find a direction of descent. The algorithm used
is now a subgradient-type algorithm. The goal of this section is two-fold:

1. Calculate L′(θ) : W 1,∞(D;D) → R the nonlinear collection of directional
derivative of L. Show that according to Hadamard’s structure theorem L′(θ) depends
only on the value of θ · n on ∂Ω. Let us denote j(θ · n) = L′(θ).

2. Compute V ∗ such that j(V ∗) = min‖V ‖=1 j(V ), and advance the domain
according to V ∗. It is in the computation of V ∗ that the Hilbertian structure is
compulsorily needed.

5.1. A general theorem about eigenvalue differentiation. Differentiating
eigenvalues when they are multiple is nowadays quite standard. Two different ap-
proaches exist: the one of [19] for the foundations or [27] and [20], or the one of [15]
or [18] using the subgradient theory of Clarke [14]. We shall only state their result
here.

Definition 5.1. Define Ω0 as the actual working domain.
� Let α > 0, β1 > 0 be constants and L be the space of linear unbounded auto-

adjoint operators from L2(Ω0)→ L2(Ω0) such that

∀L ∈ L, ∀u ∈ H1
D(Ω0) β1‖u‖2H1

D(Ω0) ≥ (Lu, u)L2 ≥ α‖u‖2H1
D(Ω0),

i.e., L is made of operators “uniformly” coercive with constant α and uniformly con-
tinuous with constant β1

� Let β2 > 0 be a constant and M be the space of continuous linear auto-adjoint
operators from L2(Ω0)→ L2(Ω0) uniformly continuous with constant β2, i.e.,

∀M ∈M, ∀u ∈ L2(Ω0) β2‖u‖2L2(Ω0) ≥ (Mu, u)L2 .
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� Define the norm in those two spaces as follows: If N ∈ L or N ∈M, then

‖N‖ = max
u∈H1

D

(Nu, u)L2

‖u‖2
H1
D

,

i.e., we endow M with the natural norm of L.
� Let U ⊂ W 1,∞(D;D) → L × M be a Fréchet differentiable mapping θ �→

(L(θ),M(θ)) with respect to the norm just defined. Define L′(θ0) (resp. M ′(θ0)) the
differential of L(θ) (resp. M(θ)) with respect to θ at the point θ = 0 applied to θ0.

Theorem 5.2. Define γ1(θ) the smallest eigenvalue of the generalized eigenprob-
lem L(θ)u = γM(θ)u and Eθ its eigenspace, Eθ = Ker(L(θ) − γ1M(θ)). Then, for
all θ0 ∈ W 1,∞(D;D), γ1(θ) is directionally differentiable at the point θ = 0 in the
direction θ0 and the value of the directional derivative is

γ′1(θ0) = min
u∈E0

(M(0)u,u)=1

(
L′(θ0)u, u

)
− γ1(0)

(
M ′(θ0)u, u

)
.

5.2. Calculus of the directional derivative of L. We want to apply the
general Theorem 5.2 in the shape sensitivity setting. We want to derivate L̃(θ) defined
as below.

Definition 5.3.

� Let T = Id+ θ and Ωθ = T ◦ Ω0.
� Let M̃(θ) and L̃(θ) be defined as for all u, v in H1

D(Ωθ),

(M̃(θ)u, v) =
∫

Ωθ
ρu · v

(L̃(θ)u, v) =
∫

Ωθ
Ae(u) : e(v).

� Let γ̃1(θ) be the smallest eigenvalue associated to the problem

L̃(θ)u = γ̃1(θ)M̃(θ)u.

� Let L̃(θ) = −γ̃1(θ) + η|Ωθ|.
The L̃(θ) (resp. γ̃1(θ)) just defined corresponds to what has been denoted L(Ωθ)

(resp. γ1(Ωθ)) in section 2.1.
Theorem 5.2 cannot be applied to γ̃1(θ) because the spaces where the operators

L̃(θ) and M̃(θ) are defined changes with θ. That is why we consider the following
definition.

Definition 5.4.

� Let M(θ) ∈M and L(θ) ∈ L be defined as

(M(θ)u, v) = (M̃(θ)u ◦ T−1, v ◦ T−1)
(L(θ)u, v) = (L̃(θ)u ◦ T−1, v ◦ T−1).

� Let γ̄(θ) be the smallest eigenvalue associated to the problem

L(θ)u = γ̄(θ)M(θ)u.

We shall work with those operators instead of the classical one. They are defined on
a domain independent of θ so that the first eigenvalue can be derivated in the sense
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of Theorem 5.2. First it must be proven that the introduced eigenvalue γ̄ is the same
as γ1 the first eigenvalue of the elasticity problem.

Lemma 5.5.

� L(θ) and M(θ) indeed belongs to L and M.
� γ̄(θ) and γ̃1(θ) coincide, where γ̃1 is defined in Definition 5.3.

Proof of Lemma 5.5.
� Let us first prove that γ̃1(θ) = γ̄(θ). Using u ∈ H1(Ωθ)⇐⇒ v = u ◦ T−1 ∈ H1(Ω0),
we have

γ̃1(θ)−1 = max
u∈H1(Ωθ)

(
M̃(θ)u, u

)
(
L̃(θ)u, u

) = max
u∈H1(Ωθ)

(
M(θ)u ◦ T, u ◦ T

)
(
L(θ)u ◦ T, u ◦ T

)

= max
v∈H1(Ω0)

(
M(θ)v, v

)
(
L(θ)v, v

) = γ̄(θ)−1.

� Let us now prove that L(θ) belongs to L. The fact that L(θ) is coercive and bounded
with respect to the H1

D(Ω0) norm comes from the fact that L̃(θ) is coercive and
bounded in the H1

D(Ωθ) norm. We have to show that these constants of coercivity and
boundedness are uniform in θ. Let’s introduce the tensor A which has the symmetries
of the elasticity:

Aijkl = Ajikl = Aijlk = Aklij

such that Aijkl(∂jui)(∂lvk) = Ae(u) : e(v). We use the standard tool of shape sensi-
tivity, namely a change of variable:

(L(θ)u, v) =
∫

Ωθ
Aijkl∂j(u ◦ T−1)i∂l(v ◦ T−1)k

=
∫

Ω0

|det∇T |Aijkl(∂sui)
(
∂j(T−1)s

)
(∂mvk)

(
∂l(T−1)m

)
(9)

=
∫

Ω0

l(θ)iskm(∂sui)(∂mvk)

with

l(θ)iskm = Aiskm + (∂lθl)Aiskm −Aijkm(∂jθs)−Aiskl(∂lθm) + o(‖θ‖W 1,∞).

Given α and β the coercivity and continuity constant of L(0), there exist η > 0 such
that (s.t.) for every θ with ‖θ‖W 1,∞ < η, we have

∀u ∈ H1
D(Ω0) 2β0‖u‖2H1

D(Ω0) ≥ (L(θ)u, u)L2 ≥ α0

2
‖u‖2H1

D(Ω0).

We then verify the hypothesis of Definition 5.1 with α1 = α/2, β1 = 2β, and U =
{θ s.t. ‖θ‖W 1,∞ < η}. An analog development stands for M .

We can now apply Theorem 5.2 to γ̄(θ) = γ̃1(θ) and end with the following result.
Theorem 5.6. Recalling Definition 5.3, L̃(θ) = −γ̃1(θ) + η|Ωθ| is directionally

differentiable with respect to θ, and its directionally derivative at θ = 0 in the direction
θ0 is given by

L′(θ0) = max
u∈E0∫

Ω0
ρu·u=1

∫
∂Ω0

(θ0 · n) (−v(u, u) + η) ,
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where v(·, ·) is a bilinear functional defined by

v(u,w) = Ae(u) : e(w)− γ1ρ(Ω0)u · w on ΓN ,
v(u,w) = −Ae(u) : e(w) on ΓD,

and where E0 is the first eigenspace associated to γ1(Ω0) = γ̃(0) the smallest eigen-
value for θ = 0.

One can of course verify that the formula when the dimension of the eigenspace
is greater than 1 is the same as the formula when the dimension is equal to one.

Proof of Theorem 5.6. We apply Theorem 5.2 to γ̃1(θ) = γ̄(θ) in order to calculate
L′(θ0). The calculus above for L (and the same for M) shows that

(L′(θ)u, v)=
∫

Ω0

(
(∂lθl)Aiskm −Aijkm(∂jθs)−Aiskl(∂lθm)

)
(∂sui)(∂mvk)

=
∫

Ω0

Aiskm(∂lθl)(∂sui)(∂mvk)−Aiskm(∂sθl)(∂lui)(∂mvk)

−Aiskm(∂mθl)(∂sui)(∂lvk),

(M ′(θ)u, v) =
∫

Ω0

(∂lθl)ρuivi.

Applying Theorem 5.2 gives

L′= max
u∈E0

∫
Ω0
ρu·u=1

−
∫

Ω0

Aiskm(∂lθl)(∂sui)(∂mvk) +Aiskm(∂sθl)(∂lui)(∂mvk)

+
∫

Ω0

Aiskm(∂mθl)(∂sui)(∂lvk) + (∂lθl)ρuivi + η(∂lθl).(10)

We perform an integration by part on θ; the term in
∫

Ω0
is equal to

(11) θlAiskm
[
∂l(∂sui∂muk)− ∂s(∂lui∂muk)− ∂m(∂sui∂luk)

]
− θlγ1ρ∂l(uiui).

Some algebra used in coordination with γ1ρu = −divAe(u) allows us to conclude that
this term is equal to 0. The remaining term is then equal to

L′(θ) = max
∫
∂Ω0

(θ · n)[−Aiskm(∂sui)(∂muk) + γ1ρu · u+ η]

+
∫
∂Ω0

Aiskmθlnm(∂sui)(∂luk) +Aiskmθlns(∂lui)(∂muk).(12)

On the Neumann part of the boundary we use Ae(u) · n = 0 and the definition of C
to conclude that

Aiskm(∂sui)nm = 0 = Aiskm(∂muk)ns.

On the Dirichlet part of the boundary we use u = 0 so that ∇u = ∂u
∂n ⊗n to conclude

that

(θ · n)(∂muk) = θlnm(∂luk) and (θ · n)(∂sui) = θlns(∂lui)

so that

L′(θ) = max
∫
∂Ω0

(θ · n)[−Ae(u) : e(u) + γ1u · u+ η] + 2
∫

ΓD
(θ · n)Ae(u) : e(u).
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Remark 5.7 (Assumed regularity of Ω0). We need regularity on the domain Ω0
in two occurrences. The first one is when we perform a change of variable ((9) in the
demonstration of Lemma 5.5), and the second one is when we perform an integration
by part ((11) in the demonstration of Theorem 5.6).

The change of variable is compulsory in order to prove the derivability. It is
sufficient to suppose Ω0 Lipschitz in order to be able to perform it.

The integration by part is used only in order to express the directional derivative
(10) as an integral over ∂Ω0 (see (12)). Performing this integration by part is asking
a lot of regularity on Ω0 because the eigenvector u must be regular enough, i.e.,
u ∈ H1(∂Ω0). But this integration by part is not needed if the only goal is to prove
the directional derivability.

5.3. Calculating V ∗. The goal of this subsection is to calculate V ∗ the mini-
mizer to

(13) min
‖V ‖=1

max
u∈E0∫

Ω0
u·u=1

∫
∂Ω0

V (−v(u, u) + η) ,

where v(·, ·) is defined in Theorem 5.6. We will prove in this section that this is a
semidefinite programming (SDP) problem in low dimension that is easily solved. The
use of SDP for eigenvalue optimization is classical; the goal of this section is to show
that solving this SDP problem is a very easy task thanks to the Hilbertian structure
endowed by the velocity regularization. A good introduction to SDP is [33] and the
references therein. Only some basic facts about SDP problems have been recalled
here.

Definition 5.8.

� Let Y be an unknown vector. Give Y0 a vector and E(Y ) a matrix whose
coefficients depend linearly on Y . Let ≥ 0 stand for “symmetric positive.” An SDP
problem is of the form

min
E(Y )≥0

Y TY0.

� SDP problems are efficiently solvable by duality methods. In order to ensure that
there is no gap of duality, a sufficient condition is to find Y1 a strictly primal feasible
point, i.e., such that E(Y1) > 0 (definite positive).

We now need to introduce the semidefinite programming problem we will work
on.

Definition 5.9. Recall Definition 4.1 of the scalar product (·, ·)H1 .
� Define (ei)i=1,...,d an orthonormal basis of E0 for the scalar product

(u,w) =
∫

Ω0

ρu · v.

� Define (aij)i,j=1,...,d and c as

(aij , X)H1 =
∫
∂Ω0

−Xv(ei, ej) and (c,X)H1 =
∫
∂Ω0

Xη.

� Define hk an orthonormalized basis of Span(aij , c)i,j for the scalar product (, )H1 .
Let m be the dimension of this space, and let (akij)k=1,...,m (resp. (ck)k=1,...,m) be the
coordinates of aij (resp. c) on the basis (hk)k=1,...,m.
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� For any X = (X1, . . . , Xm) and (z, w) ∈ R2, let Y = [X,w, z].
� Let A(X) be the d× d matrix A(X)ij = akijXk, let C(X) = ckXk, and let

D(Y ) =
[
−A(X) + zId 0

0 −C(X)− z + w

]
, E(Y ) =


 D(Y ) 0 0

0 Id X
0 XT 1


 .

The coefficients of E depends linearly on Y = [X,w, z].
� Let Y ∗ = [X∗, w∗, z∗] be the solution of the following SDP problem:

(14) min
E(Y )≥0

w

Theorem 5.10. V ∗, the minimizer of the problem (13), is given by

V ∗ =
m∑
k=1

Vkhk,

where the vector X∗ = [V1, . . . , Vk] is defined as a solution of the semidefinite problem
(14).
� The problem minE(Y )≥0 w is strictly feasible; SDP programming can be applied.
� V ∗ (or equivalently X∗) is attained.

Proof. We transform the problem (13) into (14) by using the fact that v(·, ·) is
bilinear (see Theorem 5.6 for the definition of v)

min
‖V ‖H1=1

max
u∈E0
∫
Ω0
ρu·u=1

∫
∂Ω0

V [−v(u, u) + η]

= min
‖V ‖H1=1

max∑d
i=1 λ

2
i=1

∫
∂Ω0

V [−λiλjv(ei, ej) + η]

= min
‖V ‖H1=1

max∑d
i=1 λ

2
i=1
λiλj(V, aij)H1 + (V, c)H1

= min
‖V ‖H1=1

max∑d
i=1 λ

2
i=1

(V, hk)H1(λiλjakij + ck)

so that V ∗ is a minimizer of (13) if and only if X∗k = (V ∗, hk)H1 are minimizers of
the following problem:

(15) min∑
X2
k≤1

max∑d
i=1 λ

2
i=1
λiλja

k
ijXk + ckXk.

� Showing that (15) is equivalent to (14) is a standard issue of SDP: The condition
E([X,w, z]) ≥ 0 is equivalent to (X,X) ≤ 1 and D([X,w, z]) ≥ 0. The condition
D([X,w, z]) ≥ 0 is equivalent to zId ≥ A(X) and w ≥ z + C(X). So

E([X,w, z]) ≥ 0⇐⇒
∑
k

X2
k ≤ 1 and w ≥ z +Xkck and z ≥ max∑d

i=1 λ
2
i=1
λiλja

k
ijXk

so that minimizing w with the above condition is equivalent to finding X in the
problem (15).
� Choosing X = 0, z > 0, and w > z gives a [X,w, z] for which F ([X,w, z]) > 0.

The problem is then strictly feasible, an extended Slater’s condition holds, and the
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Fig. 21. Initialization for the narrow domain (left) and for the big domain (right).

duality problem (in terms of semidefinite duality) has the same extremal value.
� The condition

∑
kX

2
k ≤ 1 ensures that X is bounded and that every minimizing

sequence converges up to a subsequence. The maximum is indeed attained.
Remark 5.11. The SDP problem is not difficult to solve. Recall that d is the

dimension of the first eigenspace, then [X,w, z] is of dimension lower or equal to
d(d+1)

2 + 3 and the matrix E is a d(d+3)
2 + 3 square matrix.

6. Numerical results.

6.1. The 3d eigenvalue of a beam. We naturally set our problem in 3d with
symmetries, where we are sure to obtain a multiplicity of the first eigenvalue greater
than 1. The first example which will be called the “big domain” problem is a 3×3×1
rectangle discretized with a 21×21×23 mesh. A zero displacement boundary condition
is imposed on the plane z = 0, and four cells on the middle of the plane z = 1 are not
subject to optimization and are 50 times heavier (see Figure 21). Since the domain is
symmetric, the shapes are expected to keep a first eigenvalue of dimension at least 2
along the iterations (see Figure 22). The Young’s modulus is set to 1 and the Poisson
ratio to 0.3. In the void, the density ρ is set to 0 and the parameter ε is equal to
10−5. The second problem is the same as the first except that the rectangle is of
dimension 0.6 × 0.6 × 1 (discretized by a 15 × 15 × 43 mesh) with a mass tip that
is 200 times heavier. The second problem will be called in this section the “narrow
domain” problem.

Discussion about the big domain problem. The Lagrange multiplier be-
ing set to 5.3 × 10−8, Figure 23 is a display of the evolution of the three smallest
eigenvalues. There is one eigenvalue that is always (except on iterations 22 to 28) of
multiplicity two and one which is of multiplicity one. The eigenvalue of multiplicity
one corresponds to an eigenvector which is localized on the heavy cells and that inter-
feres in the optimization process. The panel on the left-hand side of Figure 23 shows
the evolution of the eigenvalues. On each iteration, the value of d the dimension of
the subspace of the first eigenvalue is shown. The expected behavior of the algorithm
can be verified.

Discussion about the narrow domain problem. As can be seen in Figure 25
(left), the global evolution of the algorithm is as follows: First reinforce the structure
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Fig. 22. The optimal shape for the first eigenvalue in a big domain (left) and its boundary (right).
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Fig. 23. Evolution of the three smallest eigenvalues (left) and an interpretation (right) for the
big domain.

Fig. 24. The optimal shape for the first eigenvalue in a narrow domain (isovalue 0.2 of the
density is drawn).
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Fig. 25. Evolution of the two smallest eigenvalues (left) and the objective function (right) for
the narrow domain.

Fig. 26. Initialization and optimal shape for the first eigenvalue of a short cantilever.

so that the first eigenvalue raises, and then optimize the weight of the structure. The
Lagrange multiplier is set to 10−8 for this example.

Discussion about the symmetries. Neither of the two problems give rise
to radially symmetrical shapes. For the narrow-domain problem it can be easily
understood by the fact that the shape is constrained into a box. For the big-domain
problem one can advance an explanation based on a mesh-effect. But it is known that
there exist symmetric problems whose solutions do not respect the symmetries. We
still do not know if the optimal shape is or is not radially symmetric for this problem.

6.2. The short cantilever. We run our algorithm on a vibrating cantilever
that is the same test case as the one of section 4.3 except that the working domain is
of size 1×2 discretized with a regular 80×160 mesh. The other parameters that have
changed are the Lagrange multiplier which is set to 0.3 and the heavier mass which
has a density 80 times heavier. This test case was introduced in [4] where the authors
pointed out the appearance of multiple eigenvalues. It is not the exact same test
because when the test of [4] has been run, the improvement of the multiple eigenvalue
method is not as obvious as in the test presented here.
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Fig. 27. Evolution of the objective function for the two different methods.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Gradient with 2 eigenvalues

Fig. 28. Evolution of the two smallest eigenvalues for the single eigenvalue optimization (left)
and for the multiple eigenvalue optimization (right).

The test is run with the standard single eigenvalue optimization (only one eigen-
value is taken into account during optimization) and the multiple eigenvalue opti-
mization processes (see Figure 26). Figure 27 shows the evolution of the objectives
functions for the two different processes.

At iteration n, the algorithm considers an eigenvalue to be of multiplicity d if
and only if the relative differences γd/γ1 − 1 ≤ ε0 < γd+1/γ1 − 1, where ε0 is a user-
defined criterion. If the shape computed at iteration n + 1 is not better than the
shape computed at iteration n and if the eigenvalue at iteration n is multiple, then
the parameter ε0 is decreased. The parameter ε0 is set to 10 percent at the beginning
of the optimization process. This explains the behavior of the algorithm in Figure 28
(right).

It can be seen in Figure 28 (left) that when the first eigenvalue is considered to be
always of multiplicity one, the two first eigenvalues have a tendency to merge and the
algorithm cannot improve the shape. If we follow the branches of eigenvalues according
to the modes, we would see that the smallest eigenvalue does not correspond to the
same modes during optimization, i.e., the algorithm optimizes one mode at iteration
n and another one at iteration n + 1. This is standard of optimization with respect
to a maximum of a function when the maximum is multiple and it is well known to
slow down the algorithm.



24 FRÉDÉRIC DE GOURNAY

7. Conclusion. The velocity-regularization method presented here improves the
speed and accuracy of the level-set method and extends it to new problems. Thanks
to the Hilbertian method, three issues can be dealt with: the extension, the regular-
ization, and the endowment of a Hilbertian structure (see the discussion in section
4.2).

The extension issue (i.e., extending everywhere a velocity which is only defined
on the boundary) is related only to the speed of the algorithm. The 2d compliant can-
tilever of section 4.4 which shows the mesh-independence of the Hilbertian method is a
good example of the improvements this new method brings to the level-set algorithm.

The regularization issue is about dealing with more regular velocities. It is indeed
an improvement as can be seen in the mechanism examples because it allows one to
improve the accuracy of the optimal shape. It allows one to also improve the speed of
the algorithm by diffusing the peaks of the velocity in the vicinity of the peak. The
only test for which velocity regularization is not as efficient in terms of accuracy as the
natural extension is the first step of the optimization procedure of the 2d mechanism
of section 4.5 (see Figure 8 (left)). This can be explained by the fact that the adjoint
is not computed with a precision that is accurate enough when the ratio of the weak
material is too high. Sadly for 2d tests which need the computation of an adjoint, it
still seems compulsory to perform the 2-steps optimization procedure. It was seen in
section 4.7 that this trick is not needed in 3d.

Because the velocity regularization endows the problem with a Hilbertian struc-
ture, it allows one to apply the level-set method of optimization for several problems
that are not differentiable but whose directional derivative exists. The computation
of the descent direction relies on an SDP problem. The transformation of the steepest
descent algorithm into an SDP problem can be made because the directional deriva-
tive of the problem is a maximum of quadratic functions over a sphere. This is the
case for the eigenvalue problem, for the robust compliance problem, and for the buck-
ling load problem which are all based on the generalized eigenvalues problem. The
investigation of the two latest problems and application of the Hilbertian method to
those issues is in progress.
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