Global exact controllability of bilinear quantum systems on compact graphs and energetic controllability - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2020

Global exact controllability of bilinear quantum systems on compact graphs and energetic controllability

Alessandro Duca

Résumé

The aim of this work is to study the controllability of the bilinear Schr\"odinger equation on compact graphs. In particular, we consider the equation (BSE) $i\partial_t\psi=-\Delta\psi+u(t)B\psi$ in the Hilbert space $L^2(\mathscr{G},\mathbb{C})$, with $\mathscr{G}$ being a compact graph. The Laplacian $-\Delta$ is equipped with self-adjoint boundary conditions, $B$ is a bounded symmetric operator and $u\in L^2((0,T),\mathbb{R})$ with $T>0$. We provide a new technique leading to the global exact controllability of the (BSE) in $D(|\Delta|^{s/2})$ with $s\geq 3$. Afterwards, we introduce the "energetic controllability", a weaker notion of controllability useful when the global exact controllability fails. In conclusion, we develop some applications of the main results involving for instance star graphs.
Fichier principal
Vignette du fichier
GraphsEnergetic_DucaAlessandro.pdf (538.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01875685 , version 1 (17-09-2018)
hal-01875685 , version 2 (07-02-2019)
hal-01875685 , version 3 (09-03-2020)
hal-01875685 , version 4 (16-07-2020)

Identifiants

Citer

Alessandro Duca. Global exact controllability of bilinear quantum systems on compact graphs and energetic controllability. SIAM Journal on Control and Optimization, 2020, ⟨10.1137/18m1212768⟩. ⟨hal-01875685v4⟩
186 Consultations
142 Téléchargements

Altmetric

Partager

More