A Metric for Sentence Ordering Assessment Based on Topic-Comment Structure - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

A Metric for Sentence Ordering Assessment Based on Topic-Comment Structure

Résumé

Sentence ordering (SO) is a key component of verbal ability. It is also crucial for automatic text generation. While numerous researchers developed various methods to automatically evaluate the informativeness of the produced contents, the evaluation of readability is usually performed manually. In contrast to that, we present a self-sufficient metric for SO assessment based on text topic-comment structure. We show that this metric has high accuracy.
Fichier principal
Vignette du fichier
ermakova_19035.pdf (143.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01873782 , version 1 (13-09-2018)

Identifiants

Citer

Liana Ermakova, Josiane Mothe, Anton Firsov. A Metric for Sentence Ordering Assessment Based on Topic-Comment Structure. 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2017), Aug 2017, Tokyo, Japan. pp. 1061-1064, ⟨10.1145/3077136.3080720⟩. ⟨hal-01873782⟩
148 Consultations
304 Téléchargements

Altmetric

Partager

More