CONSISTENT PROCEDURES FOR MULTICLASS CLASSIFICATION OF DISCRETE DIFFUSION PATHS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

CONSISTENT PROCEDURES FOR MULTICLASS CLASSIFICATION OF DISCRETE DIFFUSION PATHS

Résumé

The recent advent of modern technology has generated a large number of datasets which can be frequently modeled as functional data. This paper focuses on the problem of multiclass classification for stochastic diffusion paths. In this context we establish a closed formula for the optimal Bayes rule. We provide new statistical procedures which are built either on the plug-in principle or on the empirical risk minimization principle. We show the consistency of these procedures under mild conditions. We apply our methodologies to the parametric case and illustrate their accuracy with a simulation study through examples.
Fichier principal
Vignette du fichier
DDM_Multiclass.pdf (790.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01869545 , version 1 (06-09-2018)
hal-01869545 , version 2 (07-04-2020)

Identifiants

  • HAL Id : hal-01869545 , version 1

Citer

Christophe Denis, Charlotte Dion, Miguel Martinez. CONSISTENT PROCEDURES FOR MULTICLASS CLASSIFICATION OF DISCRETE DIFFUSION PATHS. 2018. ⟨hal-01869545v1⟩
583 Consultations
426 Téléchargements

Partager

More