Adaptive Multi-Objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Adaptive Multi-Objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem

Résumé

Automatic algorithm configuration (AAC) is an increasingly critical factor in the design of efficient metaheuristics. AAC was previously successfully applied to multi-objective local search (MOLS) algorithms using offline tools. However, offline approaches are usually very expensive, draw general recommendations regarding algorithm design for a given set of instances, and does generally not allow per-instance adaptation. Online techniques for automatic algorithm control are usually applied to single-objective evolutionary algorithms. In this work we investigate the impact of including control mechanisms to MOLS algorithms on a classical bi-objective permutation flowshop scheduling problem (PFSP), and demonstrate how even simple control mechanisms can complement traditional offline configuration techniques.
Fichier principal
Vignette du fichier
lion_2018_preprint.pdf (301.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01868401 , version 1 (05-09-2018)

Identifiants

  • HAL Id : hal-01868401 , version 1

Citer

Aymeric Blot, Marie-Éléonore Kessaci, Laetitia Jourdan, Patrick de Causmaecker. Adaptive Multi-Objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem. Learning and Intelligent Optimization Conference (LION 12), Jun 2018, Kalamata, Greece. ⟨hal-01868401⟩
67 Consultations
194 Téléchargements

Partager

More