Theoretical stability study of double-diffusive convection in a square cavity
Stabilité des écoulements de convection thermosolutale en cavité carrée
Abstract
Bifurcation phenomena in a square enclosure, submitted to horizontal temperature and concentration gradients, is studied when the opposing buoyancy forces due to horizontal thermal and concentration gradients are equal. We perform the linear, weakly non-linear and finite amplitude stability analysis of the equilibrium solution. We verify that the onset of double diffusive convection corresponds to a transcritical bifurcation point. The subcritical solutions are strong attractors beyond a particular value of the thermal Rayleigh number which corresponds to the location of turning point. The structure of subcritical and transcritical steady solutions has been studied.
On étudie analytiquement la stabilité linéaire, faiblement non linéaire et non linéaire (méthode de l'énergie) de la solution de double diffusion pure dans le cas où les forces d'origine thermique et massique sont égales et opposées. Les parois horizontales de la cellule carrée sont parfaitement isolées et les parois verticales sont maintenues à une température et à une concentration uniformes. Nous mettons en évidence l'existence de deux types de solutions convectives stationnaires sous-critique et supercritique, et déterminons les nombres de Rayleigh donnant naissance à ces deux régimes.
Origin : Files produced by the author(s)
Loading...