Extreme-value-theoretic estimation of local intrinsic dimensionality - Archive ouverte HAL
Article Dans Une Revue Data Mining and Knowledge Discovery Année : 2018

Extreme-value-theoretic estimation of local intrinsic dimensionality

Résumé

This paper is concerned with the estimation of a local measure of intrinsic dimensionality (ID) recently proposed by Houle. The local model can be regarded as an extension of Karger and Ruhl’s expansion dimension to a statistical setting in which the distribution of distances to a query point is modeled in terms of a continuous random variable. This form of intrinsic dimensionality can be particularly useful in search, classification, outlier detection, and other contexts in machine learning, databases, and data mining, as it has been shown to be equivalent to a measure of the discriminative power of similarity functions. Several estimators of local ID are proposed and analyzed based on extreme value theory, using maximum likelihood estimation, the method of moments, probability weighted moments, and regularly varying functions. An experimental evaluation is also provided, using both real and artificial data.
Fichier non déposé

Dates et versions

hal-01864580 , version 1 (30-08-2018)

Identifiants

Citer

Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E Houle, et al.. Extreme-value-theoretic estimation of local intrinsic dimensionality. Data Mining and Knowledge Discovery, 2018, 32 (6), pp.1768-1805. ⟨10.1007/s10618-018-0578-6⟩. ⟨hal-01864580⟩
428 Consultations
0 Téléchargements

Altmetric

Partager

More