Level Crossings and Absorption of an Insurance Model - Archive ouverte HAL
Chapitre D'ouvrage Année : 2018

Level Crossings and Absorption of an Insurance Model

Résumé

This chapter discusses a particular piecewise‐deterministic Markov process (PDMP) to catastrophic events occurring at random times and with random intensities. It considers the insurance model by Kovacevic and Pflug describing the evolution of a capital subject to random heavy loss events. The chapter presents a local‐time crossing relation for the PDMP. This local‐time crossing relation allows for the proof of the so‐called Kac‐Rice formula, giving an explicit form for the average number of continuous crossings by the process of a given level. The chapter provides the results on the estimation of the absorption probability and hitting time for the PDMP. The motion of the process depends on an easily estimable quantity in a parametric, semi‐parametric or non‐parametric setting. The chapter focuses on a procedure for estimating the Markov kernel R of the post‐jump locations, formula leads to estimate the transition density by the plug‐in estimator.
Fichier principal
Vignette du fichier
chapter_ins.pdf (1.86 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01862266 , version 1 (03-09-2019)

Identifiants

Citer

Romain Azaïs, Alexandre Genadot. Level Crossings and Absorption of an Insurance Model. Romain Azaïs; Florian Bouguet. Statistical Inference for Piecewise-deterministic Markov Processes, Wiley, pp.65-105, 2018, 978-1-786-30302-8. ⟨10.1002/9781119507338.ch3⟩. ⟨hal-01862266⟩
117 Consultations
91 Téléchargements

Altmetric

Partager

More