Ice-templated poly(vinylidene fluoride) ferroelectrets - Archive ouverte HAL Access content directly
Journal Articles Soft Matter Year : 2018

Ice-templated poly(vinylidene fluoride) ferroelectrets


Ferroelectrets are piezoelectrically-active polymer foams that can convert externally applied loads into electric charge. Existing processing routes used to create pores of the desired geometry and degree of alignment appropriate for ferroelectrets are based on complex mechanical stretching and chemical dissolution steps. As a simple, cost effective and environmentally friendly approach, freeze casting is able to produce aligned pores with almost all types of the materials, including polymers. In this work, we present the first demonstration of freeze casting to create polymeric ferroelectrets. The pore morphology, phase analysis, relative permittivity and direct piezoelectric charge coefficient (d33) of porous poly(vinylidene fluoride (PVDF) ferroelectrets with porosity volume fractions ranging from 24% to 78% were analysed. The long-range alignment of pore channels produced during directional freezing was shown to be beneficial in forming a highly polarised structure after breakdown of air in the pore channels via corona poling. This new method opens a way to create tailored pores and voids in ferroelectret materials for transducer applications related to sensors and vibration energy harvesting.
Fichier principal
Vignette du fichier
Ice-templated poly(vinylidene fluoride) ferroelectrets.pdf (1.78 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01859339 , version 1 (22-08-2018)



Yan Zhang, Chris R Bowen, Sylvain Deville. Ice-templated poly(vinylidene fluoride) ferroelectrets. Soft Matter, 2018, 15, pp.825-832. ⟨10.1039/C8SM02160K⟩. ⟨hal-01859339⟩


112 View
57 Download



Gmail Facebook Twitter LinkedIn More