Reducibility in Sasakian Geometry - Archive ouverte HAL
Article Dans Une Revue Trans.Am.Math.Soc. Année : 2018

Reducibility in Sasakian Geometry

Charles P. Boyer
  • Fonction : Auteur
Hongnian Huang
  • Fonction : Auteur

Résumé

The purpose of this paper is to study reducibility properties in Sasakian geometry. First we give the Sasaki version of the de Rham Decomposition Theorem; however, we need a mild technical assumption on the Sasaki automorphism group which includes the toric case. Next we introduce the concept of {\it cone reducible} and consider $S^3$ bundles over a smooth projective algebraic variety where we give a classification result concerning contact structures admitting the action of a 2-torus of Reeb type. In particular, we can classify all such Sasakian structures up to contact isotopy on $S^3$ bundles over a Riemann surface of genus greater than zero. Finally, we show that in the toric case an extremal Sasaki metric on a Sasaki join always splits.

Dates et versions

hal-01856817 , version 1 (13-08-2018)

Identifiants

Citer

Charles P. Boyer, Hongnian Huang, Eveline Legendre, Christina W. Tønnesen-Friedman. Reducibility in Sasakian Geometry. Trans.Am.Math.Soc., 2018, 370 (10), pp.6825-6869. ⟨10.1090/tran/7526⟩. ⟨hal-01856817⟩
61 Consultations
0 Téléchargements

Altmetric

Partager

More