Phonocardiogram Signal Denoising Based on Non-negative Matrix Factorization and Adaptive Contour Representation Computation - Archive ouverte HAL
Article Dans Une Revue IEEE Signal Processing Letters Année : 2018

Phonocardiogram Signal Denoising Based on Non-negative Matrix Factorization and Adaptive Contour Representation Computation

Résumé

—This letter introduces a new technique for phono-cardiogram (PCG) signal denoising based non-negative matrix factorization (NMF) of its spectrogram and adaptive contour representation computation (ACRC) of its short-time Fourier transform (STFT). More precisely, NMFs on PCG and synchronous electrocardiogram (ECG) spectrograms are first used to filter out high-energy noises from PCG. Then, ACRC is performed on a low-pass filtered version of the STFT of the resulting signal to identify relevant time-frequency (TF) components which are subsequently used for signal retrieval. Numerical experiments conducted on a real database of noisy PCG signals (SiSEC2016) illustrate the superiority of the proposed method over state-of-the-art techniques.
Fichier principal
Vignette du fichier
SPL-24418-2018.R1.pdf (2.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01855855 , version 1 (08-08-2018)

Identifiants

Citer

Duong-Hung Pham, Sylvain Meignen, Nafissa Dia, Julie Fontecave-Jallon, Bertrand Rivet. Phonocardiogram Signal Denoising Based on Non-negative Matrix Factorization and Adaptive Contour Representation Computation. IEEE Signal Processing Letters, 2018, 25 (10), pp.1475-1479. ⟨10.1109/LSP.2018.2865253⟩. ⟨hal-01855855⟩
2331 Consultations
705 Téléchargements

Altmetric

Partager

More