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Phonocardiogram Signal Denoising Based on
Non-negative Matrix Factorization and Adaptive
Contour Representation Computation

Duong-Hung Pham, Sylvain Meignen, Nafissa Dia, Julie Fontecave-Jallon and Bertrand Rivet

Abstract—This letter introduces a new technique for phono-
cardiogram (PCG) signal denoising based non-negative matrix
factorization (NMF) of its spectrogram and adaptive contour rep-
resentation computation (ACRC) of its short-time Fourier trans-
form (STFT). More precisely, NMFs on PCG and synchronous
electrocardiogram (ECG) spectrograms are first used to filter
out high-energy noises from PCG. Then, ACRC is performed on
a low-pass filtered version of the STFT of the resulting signal
to identify relevant time-frequency (TF) components which are
subsequently used for signal retrieval. Numerical experiments
conducted on a real database of noisy PCG signals (SiSEC2016)
illustrate the superiority of the proposed method over state-of-
the-art techniques.

Index Terms—Time-frequency analysis, multimodality, ECG,
PCG, NMF

I. INTRODUCTION

ARDIOVASCULAR diseases (CVDs) are one of the

world largest public health problems, causing the death
of nearly 18 million people annually, accounting for one-third
of deaths worldwide [1]. Many efforts have therefore been
put on CVDs early diagnosis, mostly relying on techniques
built on cardiac auscultation. These are non-invasive and low-
cost, being based on the listening of the heart sounds using
an acoustic stethoscope. Among many sounds produced by
the heart during a cardiac cycle, the two following ones are
the most audible. S1 is the sound created by the closing
of atrioventricular valves corresponding to the beginning of
ventricular systole, while S2 is associated with the closing
of the semilunar valves during ventricular diastole [2], [3].
With the development of electronic stethoscopes, the graphical
recording of heart sounds, called phonocardiogram (PCG)
signals, can also be displayed on a digital computer, and
then analyzed, to provide more insightful information on
the condition of the heart [4]. Unfortunately, such signals
are often severely contaminated by many different types of
noises including subject movement or speech, ambient sources,
stethoscope movement or lung sounds, making its analysis
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quite difficult [5]. Various methods have been proposed in
the literature to denoise PCG, among which those based on
wavelet or STFT thresholding [6]-[9], or empirical mode de-
composition (EMD) [10]-[13] are the most popular. However,
all of them rely on the analysis of the PCG only but, to improve
the denoising performance, it may be of interest to use extra
non-invasive recordings, as for instance the electrocardiogram
(ECG).

This idea was indeed investigated in [14], where the analysis
of simultaneous PCG and ECG was carried out by first decom-
posing their respective spectrograms using non-negative matrix
factorization (NMF) to obtain so-called activation functions
associated with PCG and ECG. The analysis of their correla-
tion lead to a PCG signal denoising algorithm, called NMF-
denoising. Unfortunately, the procedure relied on a threshold,
fixed a priori, thus limiting its adaptivity. In another direction,
a novel TF method, called adaptive contour representation
computation (ACRC), was proposed to adaptively retrieve and
denoise the modes of multicomponent signals (MCSs) [15]-
[17]. While this technique cannot efficiently deal with highly
energetic noises which are common in PCG signals, our goal
is here to show that to apply it to a low-pass version of the
signal obtained after application of NMF-denoising results in
improved denoising performance and adaptivity.

We, therefore, describe our new technique for PCG de-
noising, which we coin NMF-ACRC, in Section II. Then, in
Section III, we provide numerical simulations, carried out on
the SiISEC2016 database [18], to demonstrate the improvement
brought by the proposed method over existing ones.

II. PROPOSED METHOD FOR PCG DENOISING

This section describes the proposed algorithm for PCG
denoising called NMF-ACRC. It relies on the successive
combination of a denoising procedure based on NMF, followed
by ACRC. The principle of the denoising technique using
NMF is to determine a Wiener filter to apply to the STFT of
the original signal to get a first denoised signal. The denoising
process is then improved by low-pass filtering (LPF) the
former and then applying ACRC. The explicit block diagram
of the proposed algorithm is depicted in Fig. 1, its two
main steps, i.e. NMF and ACRC, being discussed in details
hereafter.
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Fig. 1. Block diagram of NMF-ACRC algorithm.

A. NMF-denoising: Filtering out High-energy Noises

The key idea of denoising techniques based on NMF
lies in that information of a single natural phenomenon can
be acquired using different devices, called modalities [19],
[20]. For instance, ECG corresponds to the recording of the
electrical activity of the heart, while PCG to heart sounds.
Modalities have similarities with one another, among which
the most relevant is definitely quasi-periodicity, i.e. activation
and inactivation periods are almost the same. NMFs of the
spectrogram of simultaneous PCG and ECG enable to reflect
this property by putting forward similar parameters, called
shared factors [21]. In a nutshell, NMF approximates a m
by n matrix V with non-negative elements by the product of
two non-negative matrices W and H both with non-negative
elements and with respective sizes m x k and kxn: V ~ WH,
where k, much smaller than m or n, is called the number of
estimated components. In that context, H is the shared factor
which varies little across all the recordings of multimodal
datasets.

NMFs applied to the spectrograms of physiological signals
are of particular interest for identifying signals exhibiting
similar temporal behaviors [22], since their shared factors are
highly correlated. With this in mind, a procedure enabling
the elimination of high-energy noises from noisy PCGs using
synchronous ECGs was proposed in [14]. It consists of the
following steps. First, one computes the spectrograms of noisy
PCG and synchronous ECG, respectively denoted V, and
Veeg (in our simulation, we consider the Gaussian window

2
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Fig. 2. Application of NMF-based algorithm on a noisy PCG: (a) noisy
spectrogram x; (b) denoised spectrogram §i.
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k = 12 (chosen number) components, i.e. V,""(t,w) =

W12 (w)HL*"™ (), and to V.., assuming one component,
e Vi)' (t,w) ~ W;’;’; (w)Hi’CZ(t) (the sizes of the matrices
are added as superscript to emphasize those of H, and
H,., are different). One then computes the cross-correlation
between H*(t) and Hé’c'g(t), for each k: when it is larger
than some chosen threshold A, the corresponding Hi(t)
is associated with PCG (we define this way Hif”(t)) and
noise otherwise (corresponding to the definition of Héf”(t),
such that Hifn(t) + H?’"(t) = H.*>"(t)). This finally
enables an estimation of the spectrograms of the PCG and
of the noise through: Vg (t,w) = Wgﬁb’u(w)H%f’"(t) and

Ve, (hw) = WIM2(@)HE (1),

To obtain a denoised version of the original signal, from the
estimated spectrograms one builds a Wiener filter as follows:

Vgl (t,w)

Hwiener = )
Vi, (t,w) + Vg (8 w)

)

which, applied to the STFT of the original signal, leads to a
denoised PCG signal, which is denoted $; in the sequel.

To illustrate the principle of the algorithm just described,
we first depict, in Fig. 2 (a), the spectrogram of a noisy PCG
in which two high-energy noise pulses show up at times 0.2
second and 8.1 seconds, along with the denoised spectrogram
using the just mentioned technique, in Fig. 2 (b). We notice
that the latter removes the two high-energy noise pulses from
the original PCG.

However, this result can still be improved by selecting the
most relevant coefficients in the denoised spectrogram: this
can be done by using the so-called ACRC as a post-processing
step. A brief summary of such a technique and how to apply
it in the studied context is the subject of the following section.

B. ACRC-denoising: Components Estimation and Signal Re-
trieval

The ACRC introduced in [16], [17] is computed on a low-
pass filtered (LPF) version of §; with a cutoff frequency 80Hz
to enable not only the elimination of high-frequency noises
but also a significant reduction of the computational cost of
ACRC. From now on, we denote 5 ;pr such a signal. In
what follows, the STFT of signal = using the same Gaussian
window g as previously is denoted by V7, and the principle
of ACRC applied 31, 1,pF is detailed hereafter.
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Fig. 3. Application of ACRC: (a) on the STFT of the initial noisy PCG
displayed in Fig. 2 (a); (b): on 81,7 pF; (c) reconstructed signal.

ACRC technique is based on the projection, in some specific
direction, of the reassignment vector (RV) defined by [23].

RV(t,w) = ( 7A_§1,LPF (taw) - ta djgl,LPF (tvw) —w ) ) (2)

where 73, | .. and @;, , ., are reassignment operators corre-
sponding to [24]:

Ts (tw)=t+R V;KLPF (t,w)
I - ‘/égl,LPF (t’w)
~ 1 o Végl/‘LPF (t’w)
bt = R cn § R
31,LPr\"?

V;tl“’LPF,V'é{LPF being respectively STFTs of $; pp com-
puted with windows ¢ — tg(t) and ¢'(¢), and R{X} and
S {X} are respectively the real and imaginary parts of com-

plex number X.

When crossing a ridge associated with the TF signature of a
component, RV undergoes a strong variation in its orientation.
To locate these sudden changes, a strategy developed in [15],
[23] consisted of two steps: the projection of RV in the
direction associated with an angle 6, and then contours points
(CPs) were defined as the location of the sign changes of the
projection. CPs are then linked to form so-called contours. To
avoid both the issue of choosing § and numerical instabilities,
an adaptive technique, proposed in [17], defined CPs as the
zeros of the projection of RV in a direction corresponding
to the average of the orientation of RV over a squared
neighborhood centered at the point of study. This resulted in a
robust estimation of TF signatures for a wide class of MCSs.
Therefore, we stick to that definition of contours in the present
paper. Once the contours are computed, the BA associated
with one contour corresponds to the set of points (¢,w) such
that, at this location, RV points to that contour. Finally, signal
reconstruction is performed by inverting the STFT considering
only the coefficients belonging to these BAs.

We notice that the average number of contours detected
is 3.5 contours/second: the quasi-periodicity of PCG can be
reflected by ACRC and the total number of contours is close to
3.5N/1000, N being the signal length. We therefore display,
in Fig. 3 (a) and (b), BAs along with the first 3.5N/1000
contours (in red) computed with ACRC on the non-filtered and
filtered STFTs associated with the signals whose spectrograms
are displayed in Fig. 2 (a) and (b), respectively. From Fig. 3
(a), it is clear that ACRC computes contours associated with
the two high-energy impulse noises mentioned above, while
after noise removal using NMF-based algorithm, the computed
contours are apparently more relevant. Finally, we illustrate in
Fig. 3 (c) the reconstruction of the PCG signal by selecting
STFT coefficients associated with BAs that are displayed in
Fig. 3 (b).

III. NUMERICAL EXPERIMENTS AND DISCUSSION

This section investigates the effectiveness of the proposed
NMF-ACRC algorithm by comparing it with EMD [10],
shifted-symmetrized-regularized hard-thresholding (SSR-HT)
[9], NMF, and ACRC, on the SiSEC2016 database [18]. Note
that it was shown in [9] that SST-HT outperforms the con-
ventional hard-thresholding (HT) [25] and block-thresholding
(BT) [26] for PCG denoising. Before going into the details of
such comparisons, we first present the database and the evalua-
tion criteria in the following sections. The Matlab code imple-
menting the method and the scripts generating all figures are
available at github.com/phamduonghung/NMF_ACRC2018.

A. SiISEC2016 Database

The numerical simulations are conducted on a real database
that was already used during the sixth community-based Signal
Separation Evaluation Campaign (SiSEC2016) [18]. PCGs
were recorded with a cardiac microphone MLT210 on three
healthy volunteers, while ECGs were simultaneously acquired
by PowerLab instrument. Such signals sampled at 1KHz were
then passed through a 15 to 300Hz band-pass filter. In total,
sixteen such synchronous PCGs and ECGs were acquired,
lasting from ten seconds to more than a minute. In a second
time, PCGs were artificially contaminated by different real
interference (radio, cough, pseudo-periodic breathing noise,
etc.).

)
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Fig. 4. SDR, SIR gains and SAR (measured in dB) for different cross-
correlation threshold values A when applying either NMF or NMF-ACRC
to the noisy PCG signal displayed in Fig. 2 (a).
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Fig. 5. Denoising performance (measured in dB) of the tested techniques on the database SiISEC2016 (threshold A = 0.75 chosen optimally in [14]): (a)

SDR gain; (b) SIR gain; (c) SAR.

B. Evaluation Criteria

In what follows, a quantitative measurement based on BSS
Eval Toolbox [27] is used for the assessment of the denoising
performance of the different methods. It consists in decom-
posing each estimated signal into a number of contributions
associated with the target signal, interference of the unwanted
sources and artifacts. This corresponds to the three following
evaluation criteria expressed in decibels (dB).

o Signal-to-Distortion Ratio (SDR): measures globally the
level of all error terms.

« Signal-to-Interference Ratio (SIR): estimates the level of
interference from all the other interfering sources.

o Signal-to-Artifacts Ratio (SAR): estimates the level of
algorithmic artifacts and the linearity separation of the
algorithm.

It should be noted that when using SDR and SIR, the gain
between each of them obtained on the denoised (output) and
initial noisy (input) signals is computed. For instance, SDR
gain = output SDR-input SDR.

C. Sensitivity to Cross-Correlation Threshold of NMF-ACRC

As highlighted in Section II-A, the main drawback of NMF
based denoising is that the threshold A needs to be manually
set to separate the noise and signal components. To illustrate
how NMF-ACRC manages to alleviate this dependence on A,
we display, in Fig. 4, the three evaluation measures (SDR,
SIR gains and SAR) obtained when using either NMF-based
or NMF-ACRC algorithms, for different A and for the signal
depicted in Fig. 2 (a). It is clear to see that all these measures
obtained with the former are null when A is small, which
means that PCG is not denoised at all in that case. Further-
more, they increase and then stagnate when some particular
value for A is reached. In contrast, the evaluation measures
obtained when using the latter are bigger and also more stable
with respect to parameter A, especially when A is small. This
tells us that to use NMF-ACRC rather NMF enables to limitate
the dependance on A, which makes the proposed new method
more adaptive.

D. Comparison of Denoising Performance

This section presents some comparisons of NMF-ACRC
with some state-of-the-art techniques including EMD, SSR-

HT, NMF-based, and ACRC on the SiSEC2016 database. To
this end, we display the distribution of the different evaluation
criteria using the boxplot representation, where the central line
(in red) indicates the median, the bottom and top edges of
the box indicating the 25th and 75th percentiles, respectively
[28]. Furthermore, the threshold X\ is set to 0.75 in NMF-
based and NMF-ACRC algorithms, which is also the optimal
value already determined in [14]. Bear in mind that A is the
threshold put on the cross-correlation between H™ and H,"

ecg
to tell whether the kth component is related to noise or signal.

In Fig. 5, we depict the denoising results associated with
each of the tested techniques in terms of SDR, SIR gains and
SAR. At first glance, we remark that NMF-ACRC produces
better results than the other studied methods for all the three
evaluation criteria. More precisely, in Fig. 5 (a), SDR median
gain obtained by using NMF-ACRC is 8.0 dB, while it equals
6.6, 4.9, 6.6 and 6.2 dB with EMD, SSR-HT, NMF-based,
and ACRC, respectively. Moving to Fig. 5 (b), the former
leads to an SIR median gain of 12.4 dB bigger than those
associated with the latter (11.2, 6.3, 8.1 and 10.0 dB for EMD,
SSR-HT, NMF-based, and ACRC respectively). Finally, Fig.
5 (c) shows that SAR median with the proposed technique is
12.3 dB, while the ones associated with the others are much
smaller: 6.6, 8.9, 8.7, and 5.7 dB, respectively. All in all, for
PCG denoising, these results plead in favor of mixing NMF
with ACRC as is done in NMF-ACRC.

IV. CONCLUSION

In this letter, we have introduced a new technique for PCG
denoising based on the use of two different techniques NMF
and ACRC. By mixing them, we managed to circumvent their
intrinsic limitations resulting in a significant improvement in
terms of denoising performance. In a nutshell, NMF was first
applied to remove the high-energy noises from the initial noisy
PCG signal, while ACRC was carried out as a post-processing
step to estimate the TF signatures of the relevant compo-
nents. These were subsequently used for signal reconstruction.
Numerical experiments demonstrated the effectiveness of the
proposed technique on a database of real PCG signals. Future
work should now be devoted to answer the question whether
the improvement in terms of PCG signal denoising brought by
NMF-ARCR can be profitably used to improve early diagnosis
of heart diseases.
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