Simulation of a Clustering Scheme for Vehicular Ad Hoc Networks Using a DEVS-based Virtual Laboratory Environment
Résumé
Protocol design is usually based on the functional models developed according to the needs of the system. In Intelligent Transport Systems (ITS), the features studied regarding Vehicular Ad hoc Networks (VANET) include self-organizing, routing, reliability, quality of service, and security. Simulation studies on ITS-dedicated routing protocols usually focus on their performance in specific scenarios. However, the evolution of transportation systems towards autonomous vehicles requires robust protocols with proven or at least guaranteed properties. Though formal approaches provide powerful tools for system design, they cannot be used for every types of ITS components. Our goal is to develop new tools combining formal tools such as Event-B with DEVS-based (Discrete Event System Specification) virtual laboratories in order to design the models of ITS components which simulation would allow proving and verifying their properties in large-scale scenarios. This paper presents the models of the different components of a VANET realized with the Virtual Laboratory Environment (VLE). We point out the component models fitting to formal modeling, and proceed to the validation of all designed models through a simulation scenario based on real-world road traffic data.
Mots clés
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...