Delays and States in Dataflow Models of Computation - Archive ouverte HAL Access content directly
Conference Papers Year :

Delays and States in Dataflow Models of Computation


Dataflow Models of Computation (MoCs) have proven efficient means for modeling computational aspects of Cyber-Physical System (CPS). Over the years, diverse MoCs have been proposed that offer trade-offs between expressivity, conciseness, predictability, and reconfigurability. While being efficient for modeling coarse grain data and task parallelism, state-of-the-art dataflow MoCs suffer from a lack of semantics to benefit from the lower grained parallelism offered by hierarchically modeled nested loops. In this paper 1 , a meta-model called State-Aware Dataflow (SAD) is proposed that enhances a dataflow MoC, introducing new semantics to take advantage of such nested loop parallelism. SAD extends the semantics of the targeted MoC with unambiguous data persistence scope. The extended expressiveness and conciseness brought by the SAD meta-model are demonstrated with a reinforcement learning use-case.
Fichier principal
Vignette du fichier
samos-2018_ARRESTIER.pdf (426.13 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01850252 , version 1 (20-08-2018)



Florian Arrestier, Karol Desnos, Maxime Pelcat, Julien Heulot, Eduardo Juarez, et al.. Delays and States in Dataflow Models of Computation. SAMOS XVIII, Jul 2018, Pythagorion, Greece. ⟨10.1145/3229631.3229645⟩. ⟨hal-01850252⟩
151 View
425 Download



Gmail Facebook Twitter LinkedIn More