
HAL Id: hal-01850252
https://hal.science/hal-01850252

Submitted on 20 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delays and States in Dataflow Models of Computation
Florian Arrestier, Karol Desnos, Maxime Pelcat, Julien Heulot, Eduardo

Juarez, Daniel Menard

To cite this version:
Florian Arrestier, Karol Desnos, Maxime Pelcat, Julien Heulot, Eduardo Juarez, et al.. Delays
and States in Dataflow Models of Computation. SAMOS XVIII, Jul 2018, Pythagorion, Greece.
�10.1145/3229631.3229645�. �hal-01850252�

https://hal.science/hal-01850252
https://hal.archives-ouvertes.fr

Delays and States in Dataflow Models of
Computation

Florian ARRESTIER∗, Karol DESNOS∗, Maxime PELCAT∗, Julien HEULOT∗, Eduardo JUAREZ†, Daniel MENARD∗
∗Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes, France

email: farresti, kdesnos, mpelcat, dmenard@insa-rennes.fr
†CITSEM, UPM, Madrid, Spain
email: eduardo.juarez@upm.es

Abstract—Dataflow Models of Computation (MoCs) have
proven efficient means for modeling computational aspects of
Cyber-Physical System (CPS). Over the years, diverse MoCs have
been proposed that offer trade-offs between expressivity, concise-
ness, predictability, and reconfigurability. While being efficient
for modeling coarse grain data and task parallelism, state-of-the-
art dataflow MoCs suffer from a lack of semantics to benefit from
the lower grained parallelism offered by hierarchically modeled
nested loops.

State-Aware Dataflow (SAD) extends the semantics of the
targeted MoC with unambiguous data persistence scope. The
extended expressiveness and conciseness brought by the SAD
meta-model are demonstrated with a reinforcement learning use-
case.

I. INTRODUCTION

Dataflow Models of Computation (MoCs) are commonly
used to model stream processing applications in a wide range
of domains such as video and audio processing [1], [2],
telecommunications [3], and computer vision [4]. Dataflow
MoCs and related languages are subject to an increasing
popularity due to their advanced analyzability and their natural
expressiveness of parallelism. The recent specialized dataflow-
based programming language TensorFlow [5] is an evidence
of this popularity in the context of neural networks training
on massively parallel hardware architectures. In the computer
vision applications field, the recent OpenVX [6] standard aims
at providing high performances on heterogeneous architectures
based on a dataflow MoC. Representing an application with
a Dataflow Process Network (DPN) [7] consists of dividing
it into persistent processing entities, named actors, connected
by First-In First-Out queues (FIFOs). An actor fires, meaning
that it performs some processing, when enough data tokens
are available on its input FIFOs. A data token is an abstract,
indivisible data unit. When an actor completes a firing, it
may produces data tokens on its output FIFOs. The number
of data tokens consumed and produced by an actor for each
firing is defined by a set of firing rules [7]. Different firing
rules are specified in the semantics of existing dataflow MoCs.
For instance, in the Synchronous DataFlow (SDF) MoC the
number of data tokens exchanged by an actor at each firing
is constant. FIFOs can have an initial state corresponding to
an initial number of data tokens present in the FIFO, available

prior to any actor firing. The initial data tokens of a FIFO are
called delays.

Dataflow MoCs have proven efficient for modeling contin-
uous streaming applications with coarse grain data and task
parallelism. However, iterative structures with finer grained
parallelism such as nested loops are not efficiently modeled
by current dataflow MoCs. Dataflow MoCs are well suited for
static stream oriented applications but in modern streaming
applications such as adaptive filtering or machine learning,
parameters are updated dynamically and thus need to persist
across graph iterations.

In this paper, we show that solutions found in the literature
to tackle the problem of persistent data do not offer the neces-
sary flexibility in the application design process. As an answer
to these limitations, we introduce the State-Aware Dataflow
(SAD) meta-model, applicable to any dataflow MoC with
a well defined concept of graph iteration. SAD introduces
explicit initialization semantics for delays and unambiguous
persistence scope for data tokens. The semantics of delays
proposed by SAD aims at offering a concise and expres-
sive representation of complex applications containing nested
loops. Persistent data tokens are used to store the state of a
graph across successive graph iterations. SAD enforces the
possibility of local persistent state at low levels of hierarchy
with no impact on the data parallelism of top-level actors.
Thus, SAD provides programmers with flexibility in the de-
sign of complex applications by enforcing the compositionality
of hierarchical graphs.

Previous work is presented in Section II. Then, the new
semantics of delays of SAD is formally introduced in Sec-
tion III. Section IV presents the persistence semantics of
SAD and the application of the SAD meta-model to the
Parameterized and Interfaced Synchronous DataFlow (πSDF)
MoC [3]. Finally, an application of SAD to a reinforcement
learning use case is detailed in Section V before concluding
in Section VI.

II. BACKGROUND AND RELATED WORK

A. Synchronous DataFlow MoC

The Synchronous DataFlow (SDF) MoC [8] is the most
popular static specialization of the DPN MoC. Firing rules of
the SDF MoC define data token production and consumption

rates of actors as fixed scalars. The graphical semantics of
the SDF MoC and an example of SDF graph are presented in
Figure 1.

A actor

1 Data ports
and associated
rate

FIFO

FIFO with D
delay tokensD

B
2

CA 8 4 1
1 1

1

2

Figure 1: Semantics of the SDF MoC and example graph.

Formally, an SDF graph G = (A,F) contains a set of actors
A that are interconnected through a set of FIFOs F . An actor
a = (P in , P out) ∈ A contains a set of input ports P in and a
set of output ports P out . Each port p ∈ P is used to anchor
a unique FIFO between actors. Functions src : F → P in and
sink : F → P out associate source and sink ports to a given
FIFO. The data rate specific to each port is defined by the
function rate : (P in ∪ P out) → N∗ corresponding to the
fixed firing rule of an SDF actor.

The initial data tokens of a FIFO f ∈ F are called delays.
Formally, a delay d = (f, n) is associated to a FIFO f ∈ F ,
and a value n ∈ N∗. The value n of the delay is the number of
initial data tokens of f . Some properties of dataflow graphs
are defined hereafter as they will be used in the rest of the
paper.

Consistency is the property of a dataflow graph to be
bounded in memory, which means that data tokens will not
accumulate indefinitely in any FIFO of the graph. Consistency
is checked through the analysis of the topology matrix Γ asso-
ciated with an SDF graph [8]. Formally, Γ(i, j) is the amount
of data tokens produced or consumed by actor i on FIFO j.
Γ(i, j) is a positive number if the actor i produces data tokens
on the FIFO j and a negative number if the actor consumes
data tokens. The graph is consistent if rank(Γ) = |A| − 1,
with |A| the number of connected actors in the graph [8]. The
Repetition Vector (RV), noted q, is defined as the smallest
non-zero integer vector verifying Γ ∗ q = 0.

Liveness is the property of a graph to run indefinitely
without any deadlocks. A live graph has sufficient initial data
tokens to execute a full iteration and each graph iteration
starts with the same number of initial data tokens. Different
approaches to the problem of verifying liveness of a graph
exist in the literature. The most common approach is called
the Symbolic Execution (SE). SE consists of performing a
symbolic execution of a graph to check if the graph can go
through a full iteration and returns to the same initial state. SE
is not suited for large graph as it takes a long time to perform
the symbolic execution. Mathematical approaches have been
researched to make this analysis faster. In [9], Ghamarian et al.
give a necessary and sufficient condition based on the analysis
of the strongly connected components of an SDF graph.

Compositionality is the property of a dataflow graph to be
analyzable independently from the internal specification of the
actors composing the graph. In other words, in a compositional
graph, modifying the internal behavior of an actor does not
affect the analyzable properties (consistency, liveness, ...) of
the graph.

The popularity of the SDF MoC comes from its great
analyzability. Indeed, using static analyses, the consistency and
liveness properties of an SDF graph can be verified. When
an SDF graph is schedulable, i.e it is consistent and live, a
minimal sequence of firings of the actors exists for achieving
an infinite execution with bounded memory. Such minimal
sequence is called a graph iteration and the number of firings
of each actor is given by the coefficients of the RV of the
graph. Figure 1 presents an SDF graph that is consistent and
live. For each graph iteration, actor A is executed 1 time, actor
B 4 times, and actor C 16 times.

Static dataflow models have been proposed to extend
the expressiveness and conciseness of the SDF MoC while
maintaining its predictability. The Cyclo-Static Synchronous
Dataflow (CSDF) MoC [10] has the same expressiveness as
the SDF MoC but is more concise. The Interfaced Based
Synchronous Dataflow (IBSDF) MoC [11] enforces the com-
positionality and expressiveness of the SDF MoC. The Pa-
rameterized DataFlow (PDF) [12], Schedulable Parametric
Dataflow (SPDF) [13], and πSDF [3] are dynamic extensions
of the SDF that enforce dynamic reconfigurations of dataflow
graphs.

The next section presents the πSDF MoC as it is the
reference MoC used to formally present the SAD meta-model
(Section IV).

B. Parameterized and Interfaced Synchronous DataFlow MoC

data input
interface

data output
interface

N
locally static
parameter

configuration
input interface

parameter
dependency

configuration
input port

N

A D
11

H
1

1B
1
11

1

N

C
111

1

Figure 2: Example of a πSDF graph.

The Parameterized and Interfaced Synchronous DataFlow
(πSDF) MoC [3] is a hierarchical and dynamically reconfig-
urable extension of the SDF MoC. A hierarchical actor is a
dataflow actor whose internal behavior is defined by a dataflow
graph. The encapsulation of sub-graphs is similar to function
calls in imperative languages. Figure 2 presents an example
of a hierarchical πSDF graph with the associated graphical
semantics. Actor H is a hierarchical actor defined by the sub-
graph formed by actors B and C.

Formally, a πSDF graph G = (A,F, I,Π,∆) contains in
addition to a set of actors A and a set of FIFOs F , a set of
hierarchical interfaces I , a set of parameters Π, and a set of
parameter dependencies ∆.

Interfaces I = (I in , Iout) decorrelate the inner definition
of a sub-graph from the apparent behavior of the hierarchical
actor. A source interface iin ∈ I in is a vertex transmitting to
the sub-graph the data tokens received on the corresponding
data input port of the corresponding hierarchical actor. If more

data tokens are consumed by the sub-graph during an iteration,
the source interface behaves as a circular buffer and produces
the same data tokens as many times as needed. Symmetrically,
a sink interface iout ∈ Iout only transmits the last data tokens
produced during a sub-graph iteration, and discards any excess
of data tokens relatively to the production rate of the parent
actor. These hierarchical interfaces, inherited from the IBSDF
MoC [11], make the πSDF MoC a compositional MoC.

Parameters π ∈ Π are associated with parameter values
v ∈ N. Parameter values can either be statically defined, or
dynamically set by actors at runtime. Reconfigurability of the
πSDF MoC comes directly from parameters whose values are
used to influence different properties, namely the computation
of an actor, the rates of the data ports of an actor, the value
of another parameter and the number of delays in a FIFO.
In Figure 2, parameter N sets the number of firings of actor
C inside the hierarchical actor H . Thanks to the hierarchical
interfaces, the value of N does not affect the number of firing
of the actor H , and the graph is compositional.

C. Dataflow Delays in the Literature

Delays are defined as the initial state of a FIFO [8], which
corresponds to the number of data tokens present in the FIFO
when a graph iteration starts. As illustrated in Figure 3, delays
are mainly used for two purposes: to pipeline actor firings, and
to ensure liveness of cyclic data-paths.

1

BA
11

(a) Example of a pipeline in an
SDF graph.

B
1

1

1
A

1 1

(b) Example of an SDF graph with
a cyclic path.

Figure 3: Examples of delay usage in dataflow graphs.

Having a pipelining delay on a FIFO f means that an offset
exists between the iteration in which data token are produced
on f , and the iteration in which these data token are consumed
on f . In Figure 3a, the token produced by actor A at iteration
n is consumed by actor B at iteration n+ 1.

Initial tokens inside FIFOs also prevent deadlocks in
dataflow graphs that contain cyclic data paths. For example,
during an iteration of the graph of Figure 3b, actor B fires
only when actor A produces 1 data token, and actor A needs
a data token from actor B to fire. Hence, a sufficient number
of delays are needed in this cyclic data path to initiate the first
actor firing, and prevent a deadlock.

Although the concept of delays exists in most dataflow
MoCs, the initial values given to the corresponding data tokens
is hardly mentioned, let alone specified, in the literature.
When specified, initial values are set to 0 [8], [14]. The
lack of specification on the initial values of delays leads
to inconsistent behaviors across different programming tools.
Initialization of delays is made explicit with the new semantics
of delay proposed in SAD.

The persistence of the data tokens of delays across levels
of hierarchy and across graph iterations also differs between

MoCs. In a flat model, i.e without hierarchy, like the SDF
MoC [8], the last data tokens produced during an iteration n
are used for the initial conditions of iteration n+1. However, in
hierarchical MoCs, actors can be defined by dataflow graphs.
Thus, what happens to the persistence of the delays contained
in a hierarchical actor ? In the IBSDF MoC [11], levels of
hierarchy are clearly delimited with the use of interfaces.
Therefore, in the IBSDF MoC if a hierarchical actor is fired
several times per iteration of the graph to which it belongs,
data parallelism makes it possible for these firings to occur
in parallel. Data parallelism is the property of an actor to be
independent from its input data, and thus to have multiple
firings executed concurrently. In this context, if the sub-graph
of a hierarchical actor contains a delay, the corresponding data
tokens may not persist across firings of this hierarchical actor,
as it would force the sequential execution of the parent actor.
In other words, the delay is only persistent within the scope
of the sub-graph.

In the DPN MoC [7], Lee et al. state that delays in
hierarchical actors may result in non-deterministic behaviors
even with a consistent and live sub-graph. Lee et al. propose
to make delays persistent across all levels of hierarchy with
implicit feedback loops around a hierarchical actor in order
to maintain the precedence relationship between multiple suc-
cessive firings of the actor. However, serializing the execution
of an actor induces a loss of data parallelism. Losing data
parallelism significantly impacts performance in graphs with
deep nested hierarchy levels as it forces the serialization of
the execution of the higher-level actor.

In recent dataflow-based domain-specific programming lan-
guage, the semantics of delays is also problematic. In
OpenVX [6], a computer vision dataflow-based programming
language, delays are considered persistent across all levels of
hierarchy and cyclic data path are not allowed. In Tensor-
Flow [5], there is no explicit notion of delay. Tensors, the
basic data type in TensorFlow, are considered to be globally
persistent during the lifetime of the application.

In the rest of this paper, we introduce the State-Aware
Dataflow (SAD) meta-model. SAD can be used similarly
to the Parameterized and Interfaced Meta-Model (PiMM) [3]
or the Parameterized DataFlow [12] to extend the semantics
of any dataflow MoC implementing a well-defined notion
of graph iteration. SAD adds both explicit initialization of
delays and hierarchical state awareness through the use of a
customizable persistence scope of delays to the extended MoC.
The next section presents the new semantics of delays of SAD
and demonstrates its efficiency to model simple algorithm
structures.

III. STATE-AWARE DATAFLOW: DELAY SEMANTICS

The proposed semantics offers a novel scheme for initial-
izing delays through dataflow actors. Symmetrically, the last
data tokens of a delay produced during a graph iteration can
be output. The proposed semantics fosters conciseness, as
demonstrated in Section III-C.

A. Delays Semantics

The SAD semantics extends the definition of delays of
Section II-A and is applicable to any dataflow MoC with
a well-defined concept of graph iteration. In the proposed
semantics, a delay d = (f, n, cin, cout) contains in addition
to f and n, two optional data connections cin and cout . The
input data connection cin of the delay associates a Setter actor
responsible for initializing the data tokens of f . The output
data connection cout of the delay associates a Getter actor
receiving the last held values by the delay. The dataflow rates
of cin and cout are such as rate(cin) = rate(cout) = n. How-
ever, the production rate of actor Setter and the consumption
rate of actor Getter are not required to be equal to the rates
of cin and cout .

n

CP p c

S
i

Go

(a) Proposed delay
semantics.

CP

n n

n

p c
xNP

S
i

xNI x1

xNC

Go
xNO

(b) Consistency
Equivalent Graph of
Figure 4a.

S
i

GonNP

NCn
C

1
c

P
1
p

n

(c) Consistency and
Liveness Equivalent
Graph of Figure 4a.

Figure 4: Proposed semantics of delay and equivalent graphs
used for consistency and liveness analyses.

Delays are usually represented by a filled circle positioned
on a FIFO as displayed in Figure 1. Figure 4a introduces
a new graphical representation of delays with the additional
data connections. Actors P and C are the production and the
consumption actors of the delay (i.e the actors connected to
f), respectively; and actors S and G are the setter and getter
actors, respectively. The FIFO between the delay and the getter
actor G is drawn with a dashed line to explicit which actor is
the getter actor and which actor is the consumption actor.

The new data connections induce the following precedence
rules in the firing sequence of actors during each graph
iteration.

R1. All firings of the Setter actor of a delay must occur prior
the first firing of the Consumption actor of this delay.

R2. All firings of the Getter actor of a delay must occur after
the last firing of the Production actor of this delay.

On the initialization side, the data tokens of a delay must
be explicitly initialized for the delay to be fully specified.
The default initialization of the proposed semantics is to set
all data tokens of a delay to zero. Explicitly initializing the
delays means that new initialization tokens are produced on
each graph iteration. Thus, if no actor is connected to the
output connection of a delay, the produced data tokens have
to be discarded to ensure bounded memory execution. Im-
portantly, making the initialization of delays explicit for each
graph iteration unambiguously removes memory persistence
across graph iterations. Indeed, each graph iteration starts with
initial data tokens independent from previous computations.
Therefore, delays are no longer allowed to transfer data tokens
from iteration n to iteration n+ 1. Section IV introduces new

unambiguous semantics for modeling this persistence of data
tokens across graph iterations. The next section details how
the SAD delay semantics impacts the consistency, liveness,
and scheduling analyses of a dataflow graph.

B. Delays Analysis: Consistency, Liveness and Scheduling

1) Analysis: A key feature of the SAD meta-model is its
compatibility with state-of-the-art methods for analyzing the
consistency and liveness of a graph. The proposed method for
verifying the consistency and liveness of a graph consists of
4 steps.

Step 1. The analyzed dataflow graph is transformed into
a Consistency Equivalent Graph (CEG). The CEG is an
intermediate representation used for the consistency analysis
of SAD graphs. To build a CEG, every delay with a Setter
actor or a Getter actor is replaced with a delay with no cin
or cout connection. The setter and getter actors of every delay
are now connected to virtual delay actors. The virtual delay
actor is noted ∆P

C , with P and C being the names of the
Production and Consumption actors connected to the delay,
respectively. The virtual delay actor has a unique input data
port and a unique output port. The rates of the data ports of
the virtual delay actor are equal to the value n of the delay it
replaces. Figure 4b illustrates the CEG transformation of the
graph of Figure 4a. Actors S and G are now connected to the
virtual delay actor ∆P

C instead of the delay. The rates of the
input and output data ports of ∆P

C are equal to the value n of
the delay.

Step 2. The consistency of a CEG is verified by analyzing
the topology matrix Γ of the CEG using the same method
as for SDF graphs [8]. The transformation into the CEG may
result in disconnected graphs as illustrated by Figure 4b. Thus,
the consistency of every graphs in the CEG has to be verified
for the CEG to be consistent. A necessary but not sufficient
condition for the liveness of a SAD graph is that every virtual
delay actor must have a Repetition Vector (RV) value of 1,
using the RV of the CEG. In Figure 4b, the RV values are
noted below each actor of the CEG.

Step 3. The CEG is transformed into a Consistency and
Liveness Equivalent Graph (CLEG) using the RV values
computed during step 2 to verify the liveness of the original
graph. The CLEG enforces and models the precedence rules
R1 and R2 of Section III-A. The CLEG transformation splits
virtual delay actors in two virtual actors and adds virtual data
ports and FIFOs to every production and consumption actors
connected to delays.

The virtual actors are illustrated in Figure 4c. Figure 4c
shows the CLEG of the graph of Figure 4a. Virtual actors
∆C and ∆P replace the actor ∆P

C of Figure 4b and enforce
the rules R1 and R2, respectively. NP and NC are the RV
values of actors P and C in the CEG of Figure 4b and n is
the number of delays. Actor ∆C has a consumption rate of n
on its input port and a production rate of NC on its output
port. Symmetrically, actor ∆P has a consumption rate of NP

on its input port and a production rate of n on its output
port. The virtual data ports of actors P and C, represented

in blue, have a production and consumption rate equal to
1, respectively. The CLEG in Figure 4c exposes both the
precedence relationships and the explicit data productions and
consumptions of Figure 4a.

Step 4.The liveness of the CLEG is verified using meth-
ods of the state-of-the-art such as the Symbolic Execution
method [8] or the mathematical analysis in [15].

The scheduling of a graph using the proposed delays is
compatible with the scheduling techniques used by current
dataflow MoCs. Indeed, the CLEG gives all the dependencies
between firings of actors and can be used to derive a schedule
for the original graph. Note that the virtual ports, actors, and
FIFOs are used for analysis purposes only. The virtual FIFOs
do not convey actual data tokens, and the virtual actors have
a null execution time.

I
1

B
2
1

C
1

2

2
1
2

D5 25

4
A

4
E

2

4

(a) An SDF graph with the
proposed semantics of delays.

A
4

E
244

I
1
4

B
2
1

C
1

2

2
1
2

D5 25

4

2

G2

G1

(b) CEG of the graph of Figure 5a.

Figure 5: CEG transformation of an SDF graph using the
proposed semantics of delays.

2) Example: Figure 5a presents an example of a more
complex synthetic SDF graph with the newly introduced
semantics for delays. The graph of Figure 5a is used as an
illustration of the analyses steps presented in Section III-B1.
In this graph, the delay on the (D,B) FIFO is used to avoid
a deadlock and the delay on the self-loop of actor C is
used to specify explicitly the transmission of a state between
successive firings of actor C. The two delays of Figure 5a are
initialized by actors A and I . Finally, actor E is fired by the
delay of the (D,B) FIFO after the last iteration of the cycle
composed of actors B, C and D. Figure 5b gives the CEG
transformation of the original graph of Figure 5a. Actors A
and E are now connected to the virtual delay actor ∆D

B and
actor I is connected to the virtual actor ∆C . The original graph
of Figure 5a is now split into two unconnected graphs in the
CEG, namely G1 and G2. Thus, checking the consistency of
the original graph is equivalent to checking the consistency of
both graphs in the CEG. Equations 1 and 2 gives the topology
matrices Γ1 and Γ2 of the graphs G1 and G2, respectively.

Γ1 =


I ∆C B C D

I∆C 1 −2 0 0 0
IB 4 0 −1 0 0
BC 0 0 5 −1 0
CD 0 0 0 1 −5
DB 0 0 −2 0 2

, q1 =


I 2

∆C 1
B 8
C 40
D 8


(1)

I
1
4

1
B

2 5
1

4

D51
1
2

5
2

C

2

2
12 40

4 8A 4

48 E
2

Figure 6: CLEG of the graph of Figure 5a.

Γ2 =

[A ∆B E

A∆B 4 −4 0
∆BE 0 4 −2

]
, q2 =

A 1
∆B 1
E 2

 (2)

On top of Γ1 and Γ2 are noted the names of the actors to
which the columns of the matrices refer. On the left of Γ1

and Γ2 are noted the names of the FIFOs to which the lines
of the matrices refer. rank(Γ1) = 4 and rank(Γ2) = 2, thus
the graphs G1 and G2 are consistent and so is the graph of
Figure 5a. The RVs q1 and q2 of respectively G1 and G2 give
a repetition factor of 1 for both ∆C and ∆B actors. Figure 6
shows the CLEG of the graph of Figure 5a. Actor ∆B is now
connected to actor B through a virtual port with a production
rate of q1(B) = 8 and a consumption rate of 1 as specified
by Section III-B1. Similarly actor ∆C is connected to actor
C with a production rate of q1(C) = 40. Finally, actor D is
connected to actor E and actor E has a consumption rate of 8
on this FIFO which is equal to q1(D). The CLEG of Figure 6
is live and thus the graph of Figure 5a is both consistent and
live.

The next section demonstrates the advantages of the pro-
posed semantics in term of conciseness, readability and mem-
ory usage.

C. Improved Conciseness and Memory Efficiency

In this section, we use a simple algorithmic structure to
demonstrate the lack of proper semantics to expose efficiently
fine grained parallelism application with the SDF MoC. In
many applications, iterative computations similar to the one
shown in Algorithm 1 are used. Algorithm 1 is decomposed
in 3 distinct phases, namely the prologue (line 3), the loop
kernel (line 4-6) and the epilogue (line 7).

Algorithm 1: Iterative Process Example

1 Input: Number of iterations N ;
2 Parameter file paramFile;
3 dataBuffer = execute(P, inputsP);
4 for i ∈ [0 : N] do
5 parametersi = readFile(paramFile);
6 dataBuffer = execute(B, dataBuffer , parametersi);

7 execute(E, dataBuffer);

The prologue phase is the phase initializing dataBuffer .
The loop kernel is the phase corresponding to the iterative
computations of the loop. Finally, the epilogue is the process-
ing done after the final iteration of the loop. The 3 phases
of Algorithm 1 are sequential due to the data dependency of
dataBuffer . This data dependency is enforced at line 6 of

the loop kernel phase, where results from the previous loop
iterations are used. In other words, the line 6 computation of
iteration n + 1 and iteration n are not executable in parallel.
Nevertheless, parallelism can be exploited inside each of the
3 phases.

1 Sw D
D
D

P
D

RB0
D N*D

N
I

D
ERB1

N*D D

Br
D
D

D

D

B
D1

D

R
1

LK

Figure 7: Equivalent SDF graph of Algorithm 1.

Figure 7 shows how Algorithm 1 is expressed in the strict
SDF MoC. Note that the inner processing of the loop kernel
phase is fully exposed in the strict SDF MoC. Actors P ,
{R,B} and E represent the prologue, the loop kernel and
the epilogue phases of Algorithm 1, respectively. The size of
dataBuffer is noted D and corresponds to the consumption
and production rates of actor B. Actor I is used here to
set the number N of iterations of the for loop. Actors
Sw, RB0, RB1 and Br are special actors used to manage
the loop context of Algorithm 1. RB0 and RB1 are used
to guarantee unique execution of the prologue and epilogue
phases. RB0 duplicates N times the tokens received on its
input port to its output port and symmetrically, RB1 forwards
only the last D tokens received on its input port to its output
port. Sw is a switch actor used to select which tokens are
forwarded to actor B. Since actors are stateless in the SDF
MoC, the Sw actor distinguishes the first iteration from the
rest of the loop based on the values produced by actor I .
On the first firing of actor B, tokens produced by actor P are
used. For every other firings, actor B uses the tokens produced
by its previous firing through a feedback FIFO. Br is used
symmetrically to Sw to forward the data tokens produced by
actor B to both Sw and RB1.

R
1

LK

1
1

B

D

D
D

N
I

P
D D

E

Figure 8: Equivalent SAD graph of Algorithm 1.

Figure 8 shows the representation of Algorithm 1 using
the SAD delay semantics presented in Section III-A. The
initialization of the delay is used as the prologue phase of
Algorithm 1, then actor B is fired sequentially N times.
Finally, the last data tokens produced by B are automatically
forwarded to actor E through the delay. Figure 8 demonstrates
the conciseness improvement offered by the SAD semantics
of delay.

It would be possible to simplify the graph of Figure 7
by encapsulating all iterations of the loop kernel as a single
firing of a unique actor. The interest of exposing multiple
iteration of the loop kernel in dataflow is demonstrated by

analyzing the resulting schedules of both approaches. When
the iterations of the loop kernel are not exposed in dataflow, the
resulting schedule is illustrated in Figure 9a. In the schedule
of Figure 9a, P and E correspond respectively to the prologue
and epilogue phases of Algorithm 1. Ri and Bi are the
computations of lines 5 and 6 of the ith iteration of the loop.
The entire loop kernel is done in 1 firing of the unique actor in
which R and B are encapsulated. In the schedule of Figure 9a,
the total execution time of Algorithm 1 is defined by

T1critical = TP +N ∗ (TR + TB) + TE (3)

where Tx is the execution time of the corresponding actor x
and N the number of iterations of the loop.

time
Core0 P EB0 BN-1

...R0 RN-1

Loop Kernel

1 firing

(a) Sequential schedule of Algorithm 1.

time
Core0

time
Core1

N firings

B0 B1
...P BN-2 BN-1

R0 R1 RN-1
...

N firings

E

(b) Pipelined schedule of Algorithm 1.

Figure 9: Schedules of Algorithm 1.

In Algorithm 1, the readFile function calls (line 5) are
independent from the loop iteration. This independence of
the executions of the actor R is naturally represented in the
equivalent dataflow graphs (Figures 7 and 8) where R has no
incoming dependency. Thus, it is possible to execute the N
firings of actor R in parallel, without interleaving them with
the N firings of actor B. Figure 9b shows the schedule of
the latter scenario. Executions of actor R starts before the
start of the loop and allow actor B to immediately starts its
computation after the end of the prologue. The resulting total
execution time of Figure 9b is defined by

T2critical = max(TB +N ∗ TR, N ∗ TB + TP) + TE (4)

Given T1critical and T2critical definitions, exposing the inner-
loop parallelism gives a significantly shorter execution time.
In addition, exposing such loop structures in dataflow is also
relevant in the context of Field Programmable Gate Array
implementation of nested loop kernels [16]. Thus, in the fol-
lowing, we only consider the exposed dataflow representation
of the inner-loop.

In Figure 7, actors Sw, RB0, RB1 and Br added to
manage the loop context have a non negligible impact on
memory. In the graph of Figure 7, dataBuffer values are
stored simultaneously in 4 different FIFOs for each iteration of
the loop: (Br, Sw), (Sw, B), (B, Br) and (Br ,RB1). The main
issue is that the values of dataBuffer are only useful for actor
B but get copied 3 times. The remaining FIFOs (RB0 ,Sw),

(P ,RB0) and (RB1 ,E) lead to a total memory allocation of
the graph for dataBuffer defined by

M = D ∗ (2 ∗N + 5) (5)

with D the size of dataBuffer and N the number of loop
iterations.

In Figure 8, using the delay to manage the loop means that
only 1 FIFO is needed for the entire loop structure. In the graph
of Figure 7 the size of the allocated memory is dependent on
the number N of iterations of the loop (Equation 5) whereas
with the proposed semantics the allocated memory size is
always constant and equal to the size of dataBuffer . In a
dynamic context where the number of iterations of the loop
is resolved at runtime, dynamic allocations of all the buffers
combined to the memory transfer operations can have a great
overhead on the performance of an application.

IV. STATE-AWARE DATAFLOW: PERSISTENCE SCOPE

Following the concept of graph iteration, a delay in a graph
G associated with an explicit initialization is initialized once
per iteration of G. Therefore, Consumption actors of delays
always have new data tokens for their first firing of each graph
iteration.

Having the fixed initial conditions at every iteration of a
SAD graph G means that pipelined behavior, as the one
depicted in Figure 3a, are no longer modelable. To reconcile
pipeline functionality with the new semantics of delay intro-
duced in Section III, it is necessary to define unambiguous
persistence scopes for delays. The persistence of delays defines
whether tokens inside a delay FIFO should be discarded or
preserved for the next graph iteration.

In this section we present the application of the SAD meta-
model on the πSDF MoC, resulting in the State-Aware Pa-
rameterized and Interfaced DataFlow (SPiDF). The graphical
semantics of the SPiDF MoC is presented in Figure 10a.

A. Persistence Scope of Delays: Semantics

As explained in Section II-C, having a delay in a hierar-
chical sub-graph GH of an actor H induces an internal state
for H . Such a state can either be discarded at the end of
the firing of H or preserved for the next firing. In order
to preserve the state of H , it is necessary to expand the
persistence scope of the delay outside of the sub-graph GH .
Preserving the state of H induces a precedence relationship
between its successive firings. An actor with a persistent state
across graph iterations also constitutes a state for its parent
actor, which in turns is considered as having a state, and
must have serialized firings. Hence, expanding the persistence
scope of a delay to all levels of hierarchy, as proposed in [7],
induces a precedence relationship between every parent graphs
of H . Having such strong constraint on the firing sequences of
actors becomes problematic in complex applications with deep
hierarchy as it will strongly undermine the data parallelism of
the application. To control the persistence scope of a state
in a hierarchical graph, SAD introduces 3 different types of

Hierarchical actor
with internal state

Globally Persistent
Delay

Local Delay
D

A

L

D

Locally Persistent
delay

G

D

(a) SPiDF semantics.

H

1

2 1
11

A
4

D
1

C
1 1

B

1

1
11

12 1

L

(b) Example of a SPiDF graph with
Locally Persistent Delay.

Figure 10: SPiDF graph example and associated semantics.

A
time

Core0 H0

DCore1

D

time

H1

(a) Schedule of the graph in
Figure 10b with a LPD.

A
time

Core0 H0

DCore1

D

time
H1

A
time

Core0 H0

DCore1

D

time
H1

(b) Schedule of the graph in
Figure 10b with a LD.

Figure 11: Schedules of the graph in Figure 10b.

delay illustrated in Figure 10a: Local Delay, Locally Persistent
Delay and Globally Persistent Delay.

Local Delays (LDs) use the semantics presented in Sec-
tion III-A. Thus, an LD can be initialized dynamically by
dataflow actors. The data tokens contained in the FIFO of an
LD are preserved within the scope of a unique graph iteration.

Locally Persistent Delays (LPDs) are delays whose data
tokens persist outside of the scope of the graph to which
the LPD belongs. An LPD specifies the persistence of a
delay for one level of hierarchy and establishes a precedence
relationship for successive firing of the parent actor H of the
subgraph GH to which the LPD belongs.

Globally Persistent Delays (GPDs) are LPDs that persist
across all levels of hierarchy up to the top-level graph. GPDs
are initialized only once in the lifetime of an application, prior
to the first firing of the top-level graph. Since dataflow actors
are fired once per graph iteration, they cannot be used to
initialize a GPD once in the application lifetime. Therefore, a
GPD is initialized with a function or a constant value directly
associated with the delay. GPDs are equivalent to the delays
described in [7]. By default, any LPD in the top-level of
hierarchy is a GPD.

An LPD can be seen as a feedback loop with an LD
around the hierarchical actor to which it belongs. Thus, the
LD being explicitly apparent around the hierarchical actor,
it is possible to extend furthermore the original persistence
scope by promoting the LD into an LPD or to initialize the
data tokens of the delay with an actor. This visibility of LPDs
is optional in order to maintain good readability of graphs.
Moreover, no feedback loops are needed for GPDs due to their
persistence across all levels of hierarchy. Hierarchical actors
containing persistent delays are represented as in Figure 10a.
Figures 10b presents an example of hierarchical graph using
the proposed semantics for persistence of delays.

In the graph of Figure 10b, the delay inside the hierarchical
actor H is defined as an LPD. In Figure 10b, the persistence
of the LPD is made explicit with a feedback loop around actor
H . The resulting schedule is shown in Figure 11a. Figure 11b
shows the schedule of the same hierarchical graph with an
LD in actor H instead of an LPD. Note that using an LPD
serializes the firings of actor H (Figure 11a) whereas the
LD allows the multiple firings of H to occur concurrently
(Figure 11b). The example of Figure 10b illustrates the effi-
ciency of the explicit persistence semantics for delay. Indeed,
the persistence of delays offered by the SPiDF MoC lead to
controlled data parallelism in hierarchical graphs which can
be taken into account during the analysis and scheduling of
the graphs. Unambiguous persistence semantics enforces the
compositionality of hierarchical actors and their reusability.

B. Analysis of Persistence in Reconfigurable Hierarchical
Graphs

In reconfigurable and hierarchical dataflow MoCs such as
the πSDF MoC, a graph can dynamically configure parameters
of hierarchical sub-graphs. Specifically, a graph can change
the number of delays of a sub-graph at runtime. Changing
the number of delays of a graph affects the liveness and the
consistency of the graph as mentioned in Section III. Thus,
the number of delays must be known when the liveness and
consistency analysis of a graph are verified.

In SAD, the number of data tokens of a persistent delay
can not depend on a parameter located in a level of hierarchy
below the highest level of hierarchy in which the delay persists.

The SPiDF MoC inherits the semantics, the compositional-
ity, and the schedulability properties of the πSDF MoC [3].
Thus, in the SPiDF MoC, the static parameter tree inherited
from the πSDF MoC naturally enforces this property.

V. USE CASE: CACLA UPDATE PARAMETERS

In this section we use the Continuous Actor Critic Learning
Automaton (CACLA) algorithm [17] as an application example
to demonstrate the conciseness and memory efficiency of the
SPiDF MoC. CACLA is part of the reinforcement learning
branch of machine learning. Reinforcement learning consists
of learning the model of an environment E and taking actions
accordingly without prior knowledge of E. The reinforcement
learning algorithm learns the model of E based on an abstract
representation of E called the state (S) of the environment.
For instance, in the case of the control of a robotic arm, the
environment E is the arm, the state S would be the position
and velocity of each motor, and the actions would be the
commands of the motors of the arm. Due to a lack of space,
the whole application is not detailed here, but it is available
in the PREESM tool open-source repository [4].

CACLA uses multiple neural networks to make predictions
and the coefficients of the neural networks are updated at each
iteration of the main loop of the algorithm. Figure 12 illustrates
the sub-graph responsible for the update of the coefficients of
the neural network that predicts the actions to apply to E. The
graph takes as inputs the coefficients of the neural network

NUpdate
N11V

PNN

St

T
N

NNR
St
PNN

NNN

NNNNS

1 BrI
N
NNN

NNN

NNN

Adam
NNN

NNN

Nad

NNN

NadPNN

GNN

Pad

PNN

Pad

NT

NS

out
NNNraw

NNN

NNN

NT

NNN

Grads

raw

T

out GNN

NNN

Nad

PNN
NNN NNN

NS

NS

NS

NS

BrS

St

L

Figure 12: SPiDF graph of the CACLA actor update
algorithm. Nx is the size of the associated x parameter.

PNN , the target T toward which the network is updated, the
state St of the environment and the variance V of the temporal
difference error [17]. The graph produces as output the updated
coefficients of the neural network PNN . The NNR, Adam and
Grads actors are hierarchical actors whose internal behavior
are not detailed here.

In the graph of Figure 12, the coefficients of the neural
network PNN are updated iteratively N times, N being set
by the configuration actor NUpdate . The NNR actor is a Multi
Layer Perceptron (MLP) neural network that takes the state of
the environment St as input and predicts the action based on
current coefficients of the network. The Grads actor computes
the gradients of each coefficient of the neural network based
on a target T and the outputs of NNR. Finally, the Adam
actor apply the gradients on the parameters using the Adam
optimizer algorithm [18]. The graph of Figure 12 uses both
semantics introduced by the SAD meta-model. The Locally
Persistent Delay is used to store the hyper parameters and
coefficients needed by the Adam algorithm [18]. The Local
Delay is used for the iterative update of the coefficients of the
neural network.

Table I shows the difference in memory usage between
the SPiDF and a strict πSDF implementation of the CACLA
algorithm [17]. The memory usage is defined as being the
amount of allocated memory needed to run the application.
Table I presents the difference in memory usage for both the
full CACLA application and the sub-graph of the update of
the neural network of Figure 12. The memory comparison is
based on a neural networks with 3 layers and a total of 101
parameters per network, where each parameter is encoded on
4 bytes. A gain of 35.4% in total memory usage is observed
for the whole application with a gain of 56.53% of memory
usage for the update graph alone. The update of the neural
network is the part of CACLA benefiting the most from the
new semantics due to the use of a persistent delay and due
to the iterative loop needed for the update. Indeed, in the
strict πSDF MoC, making a delay persistent across levels
of hierarchy induce the need of extra actors similarly to
Figure 7. The results of Table I show that for applications
with iterative computations and with locally persistent data,
the new semantics of SAD can drastically reduce the memory
footprint of the application. Thus, SAD is particularly well
suited for modeling applications on embedded platforms with
sparse ressources.

Table I: Comparison of memory usage of SPiDF and πSDF
implementations of the CACLA algorithm.

πSDF SPiDF Gain

Update of neural network (in bytes) 9716 4430 56, 53%

Full application (in bytes) 27492 17720 35, 4%

VI. CONCLUSION

This paper has proposed a new dataflow meta-model called
the State-Aware Dataflow (SAD) with explicit semantics of
delays. SAD can be applied to a wide range of dataflow MoCs
to extend their expressivity and conciseness, while preserving
the analysis tools of the extended MoC. We have shown
that SAD is well suited to expose the fine-grain parallelism
of nested loops with less memory overhead compared to
state-of-the-art dataflow MoCs. SAD brings functional as-
pect of an application into the model space by expliciting
initial conditions and persistence of hierarchical graph at
any given point in time, thus ensuring independence of the
model from its implementation. Finally, we have demonstrated
the conciseness and memory efficiency of SAD through a
reinforcement learning example application. Future work will
build on the new semantics of delays of SAD for optimizing
loops structure in dataflow based on state-of-the-art methods
such as polyhedral transformations.

REFERENCES

[1] B. D. Theelen, M. C. Geilen, T. Basten, J. P. Voeten, S. V. Gheorghita,
and S. Stuijk, “A scenario-aware data flow model for combined long-run
average and worst-case performance analysis,” in Formal Methods and
Models for Co-Design, 2006. MEMOCODE’06. Proceedings. Fourth
ACM and IEEE International Conference on. IEEE, 2006, pp. 185–194.

[2] C. Park, J. Chung, and S. Ha, “Extended Synchronous Dataflow for
Efficient DSP System Prototyping.” IEEE, Jun. 1999.

[3] K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, and S. Aridhi,
“Pimm: Parameterized and interfaced dataflow meta-model for mpsocs
runtime reconfiguration,” in Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS XIII), 2013 International
Conference on. IEEE, 2013, pp. 41–48.

[4] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,
“Preesm: A dataflow-based rapid prototyping framework for simplifying
multicore dsp programming,” in Education and Research Conference
(EDERC), 2014 6th European Embedded Design in. IEEE, 2014, pp.
36–40.

[5] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” 2016, pp. 265–283.

[6] K. Group, “The OpenVX API for hardware acceleration,” in http://
www.khronos.org/openvx, 2013.

[7] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings
of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[8] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[9] A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. D. Theelen, M. R.
Mousavi, and S. Stuijk, “Liveness and boundedness of synchronous data
flow graphs,” in Formal Methods in Computer Aided Design, 2006.
FMCAD’06. IEEE, 2006, pp. 68–75.

[10] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static
dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2,
pp. 397–408, Feb. 1996. [Online]. Available: http://ieeexplore.ieee.org/
document/485935/

[11] J. Piat, S. S. Bhattacharyya, and M. Raulet, “Interface-based hierarchy
for synchronous data-flow graphs,” in Signal Processing Systems, 2009.
SiPS 2009. IEEE Workshop on. IEEE, 2009, pp. 145–150.

[12] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow
modeling for DSP systems,” IEEE Transactions on Signal Processing,
vol. 49, no. 10, pp. 2408–2421, 2001.

[13] P. Fradet, A. Girault, and P. Poplavko, “SPDF: A schedulable parametric
data-flow MoC,” in Proceedings of the Conference on Design, Automa-
tion and Test in Europe. EDA Consortium, 2012, pp. 769–774.

[14] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization, Second Edition, ser. Signal Processing and
Communications. CRC press, 2009.

[15] O. Marchetti and A. Munier-Kordon, “A sufficient condition for the
liveness of weighted event graphs,” European Journal of Operational
Research, vol. 197, no. 2, pp. 532–540, Sep. 2009. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0377221708005900

[16] M. Milford and J. McAllister, “Constructive Synthesis of Memory-
Intensive Accelerators for FPGA From Nested Loop Kernels,” IEEE
Transactions on Signal Processing, vol. 64, no. 16, pp. 4152–4165, Aug.
2016. [Online]. Available: http://ieeexplore.ieee.org/document/7468564/

[17] H. Van Hasselt and M. A. Wiering, “Reinforcement learning in contin-
uous action spaces,” in Approximate Dynamic Programming and Rein-
forcement Learning, 2007. ADPRL 2007. IEEE International Symposium
on. IEEE, 2007, pp. 272–279.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

http://ieeexplore.ieee.org/document/485935/
http://ieeexplore.ieee.org/document/485935/
http://linkinghub.elsevier.com/retrieve/pii/S0377221708005900
http://ieeexplore.ieee.org/document/7468564/

	Introduction
	Background and Related Work
	SDF MoC
	SDF MoC
	Dataflow Delays in the Literature

	State-Aware Dataflow: Delay Semantics
	Delays Semantics
	Delays Analysis: Consistency, Liveness and Scheduling
	Analysis
	Example

	Improved Conciseness and Memory Efficiency

	State-Aware DataFlow: Persistence Scope
	Persistence Scope of Delays: Semantics
	Analysis of Persistence in Reconfigurable Hierarchical Graphs

	Use Case: CACLA Update Parameters
	Conclusion
	References

