Composite likelihood estimation for a Gaussian process under fixed domain asymptotics - Archive ouverte HAL
Article Dans Une Revue Journal of Multivariate Analysis Année : 2019

Composite likelihood estimation for a Gaussian process under fixed domain asymptotics

Résumé

We study composite likelihood estimation of the covariance parameters with data from a one-dimensional Gaussian process with exponential covariance function under fixed domain asymptotics. We show that the weighted pairwise maximum likelihood estimator of the microergodic parameter can be consistent or inconsistent , depending on the range of admissible parameter values in the likelihood optimization. On the contrary, the weighted pairwise conditional maximum likelihood estimator is always consistent. Both estimators are also asymptotically Gaussian when they are consistent, with asymptotic variance larger or strictly larger than that of the maximum likelihood estimator. A simulation study is presented in order to compare the finite sample behavior of the pairwise likelihood estimators with their asymptotic distributions.
Fichier principal
Vignette du fichier
clinfill.pdf (376.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01845283 , version 1 (20-07-2018)
hal-01845283 , version 2 (15-08-2018)

Identifiants

Citer

François Bachoc, Moreno Bevilacqua, Daira Velandia. Composite likelihood estimation for a Gaussian process under fixed domain asymptotics . Journal of Multivariate Analysis, 2019, ⟨10.1016/j.jmva.2019.104534⟩. ⟨hal-01845283v2⟩
242 Consultations
436 Téléchargements

Altmetric

Partager

More