All partial breakings in ${\cal N}=2$ supergravity with a single hypermultiplet
Résumé
We consider partial supersymmetry breaking in $ \mathcal{N}=2 $ supergravity coupled to a single vector and a single hypermultiplet. This breaking pattern is in principle possible if the quaternion-Kähler space of the hypermultiplet admits (at least) one pair of commuting isometries. For this class of manifolds, explicit metrics exist and we analyse a generic electro-magnetic (dyonic) gauging of the isometries. An example of partial breaking in Minkowski spacetime has been found long ago by Ferrara, Girardello and Porrati, using the gauging of two translation isometries on SO(4, 1)/SO(4). We demonstrate that no other example of partial breaking of $ \mathcal{N}=2 $ supergravity in Minkowski spacetime exists. We also examine partial-breaking vacua in anti-de Sitter spacetime that are much less constrained and exist generically even for electric gaugings. On SO(4, 1)/SO(4), we construct the partially-broken solution and its global limit which is the Antoniadis-Partouche-Taylor model.