Irregular conformal blocks and connection formulae for Painlevé V functions - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Physics Année : 2018

Irregular conformal blocks and connection formulae for Painlevé V functions

H. Nagoya
  • Fonction : Auteur

Résumé

We prove a Fredholm determinant and short-distance series representation of the Painlevé V tau function τt associated with generic monodromy data. Using a relation of τt to two different types of irregular c = 1 Virasoro conformal blocks and the confluence from Painlevé VI equation, connection formulas between the parameters of asymptotic expansions at 0 and i∞ are conjectured. Explicit evaluations of the connection constants relating the tau function asymptotics as t → 0, +∞, i∞ are obtained. We also show that irregular conformal blocks of rank 1, for arbitrary central charge, are obtained as confluent limits of the regular conformal blocks.

Dates et versions

hal-01833756 , version 1 (10-07-2018)

Identifiants

Citer

O. Lisovyy, H. Nagoya, J. Roussillon. Irregular conformal blocks and connection formulae for Painlevé V functions. Journal of Mathematical Physics, 2018, 59 (9), pp.091409. ⟨10.1063/1.5031841⟩. ⟨hal-01833756⟩
101 Consultations
0 Téléchargements

Altmetric

Partager

More