Sturm's theorem on the zeros of sums of eigenfunctions: Gelfand's strategy implemented - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Sturm's theorem on the zeros of sums of eigenfunctions: Gelfand's strategy implemented

Pierre Bérard
Bernard Helffer
  • Fonction : Auteur
  • PersonId : 1021621

Résumé

In the second section ``Courant-Gelfand theorem'' of his last published paper (Topological properties of eigenoscillations in mathematical physics, Proc. Steklov Institute Math. 273 (2011) 25--34), Arnold recounts Gelfand's strategy to prove that the zeros of any linear combination of the $n$ first eigenfunctions of the Sturm-Liouville problem $$-\, y''(s) + q(x)\, y(x) = \lambda\, y(x) \mbox{ in } ]0,1[\,, \mbox{ with } y(0)=y(1)=0\,,$$ divide the interval into at most $n$ connected components, and concludes that ``the lack of a published formal text with a rigorous proof \dots is still distressing.''\\ Inspired by Quantum mechanics, Gelfand's strategy consists in replacing the analysis of linear combinations of the $n$ first eigenfunctions by that of their Slater determinant which is the first eigenfunction of the associated $n$ particle operator acting on Fermions.\\ In the present paper, we implement Gelfand's strategy, and give a complete proof of the above assertion. As a matter of fact, we refine this strategy, and prove a stronger property taking the multiplicity of zeros into account, a result which actually goes back to Sturm (1836).
Fichier principal
Vignette du fichier
berard-helffer-ecp-gelfand-180805.pdf (289.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01832618 , version 1 (08-07-2018)
hal-01832618 , version 2 (05-08-2018)
hal-01832618 , version 3 (13-11-2018)

Identifiants

Citer

Pierre Bérard, Bernard Helffer. Sturm's theorem on the zeros of sums of eigenfunctions: Gelfand's strategy implemented. 2018. ⟨hal-01832618v2⟩
343 Consultations
224 Téléchargements

Altmetric

Partager

More