The maximal flow from a compact convex subset to infinity in first passage percolation on Z d - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

The maximal flow from a compact convex subset to infinity in first passage percolation on Z d

Résumé

We consider the standard first passage percolation model on Z^d with a distribution G on R+ that admits an exponential moment. We study the maximal flow between a compact convex subset A of R^d and infinity. The study of maximal flow is associated with the study of sets of edges of minimal capacity that cut A from infinity. We prove that the rescaled maximal flow between nA and infinity φ(nA)/n^ (d−1) almost surely converges towards a deterministic constant depending on A. This constant corresponds to the capacity of the boundary ∂A of A and is the integral of a deterministic function over ∂A. This result was shown in dimension 2 and conjectured for higher dimensions by Garet in [6].
Fichier principal
Vignette du fichier
flow to infinity (1).pdf (449.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01831419 , version 1 (05-07-2018)
hal-01831419 , version 2 (22-11-2018)

Identifiants

Citer

Barbara Dembin. The maximal flow from a compact convex subset to infinity in first passage percolation on Z d. 2018. ⟨hal-01831419v1⟩
142 Consultations
372 Téléchargements

Altmetric

Partager

More