Wasserstein Adversarial Mixture Clustering - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Wasserstein Adversarial Mixture Clustering

Résumé

Clustering complex data is a key element of unsupervised learning which is still a challenging problem. In this work, we introduce a deep approach for unsupervised clustering based on a latent mixture living in a low-dimensional space. We achieve this clustering task through adversarial optimization of the Wasserstein distance between the real and generated data distributions. The proposed approach also allows both dimensionality reduction and model selection. We achieve competitive results on difficult datasets made of images, sparse and dense data.
Fichier principal
Vignette du fichier
wamic_w_harchaoui_2018.pdf (624.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01827775 , version 1 (02-07-2018)
hal-01827775 , version 2 (28-08-2018)

Identifiants

  • HAL Id : hal-01827775 , version 1

Citer

Warith Harchaoui, Pierre-Alexandre Mattei, Andrés Alamansa, Charles Bouveyron. Wasserstein Adversarial Mixture Clustering. 2018. ⟨hal-01827775v1⟩
458 Consultations
2061 Téléchargements

Partager

More