LSDSAR, a Markovian a contrario framework for line segment detection in SAR images - Archive ouverte HAL
Article Dans Une Revue Pattern Recognition Année : 2019

LSDSAR, a Markovian a contrario framework for line segment detection in SAR images

Résumé

In this paper, we propose a generic method for the detection of line segments in SAR images. The approach relies on an a contrario framework and is inspired by the state-of-the art LSD detector. As with all a contrario approaches, false detections are controlled through the use of a background model, whose development is especially challenging in the framework of SAR images. Indeed, statistical characteristics of SAR images strongly differ from those of optical images, making the use of existing background models intrinsically inadequate. In order to circumvent this problem, we proceed in two steps. First, the building blocks of the detector, namely the local orientations, are computed carefully to avoid any spatial bias. Second, we propose a new background model, in which the spatial dependency between local orientations are modeled with a Markov chain. This is in strong contrast with most existing a contrario methods who heavily rely on independence assumptions. We provide a complete and detailed algorithm for our line segment detector, and perform experiments on synthetic and real images demonstrating its efficiency. The source code of LSDSAR can be found in https://github.com/ChenguangTelecom/LSDSAR
Fichier principal
Vignette du fichier
paper.pdf (37.8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01827482 , version 1 (02-07-2018)
hal-01827482 , version 2 (18-03-2019)

Identifiants

Citer

Chenguang Liu, Rémy Abergel, Yann Gousseau, Florence Tupin. LSDSAR, a Markovian a contrario framework for line segment detection in SAR images. Pattern Recognition, 2019, 98, ⟨10.1016/j.patcog.2019.107034⟩. ⟨hal-01827482v2⟩
657 Consultations
189 Téléchargements

Altmetric

Partager

More