Finite-time blowup for a Schr\"odinger equation with nonlinear source term - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2019

Finite-time blowup for a Schr\"odinger equation with nonlinear source term

Thierry Cazenave
Yvan Martel
Lifeng Zhao
  • Fonction : Auteur

Résumé

We consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\alpha u \quad \mbox{on ${\mathbb R}^N $, $\alpha>0$,} \] for $H^1$-subcritical or critical nonlinearities: $(N-2) \alpha \le 4$. Under the additional technical assumptions $\alpha\geq 2$ (and thus $N\leq 4$), we construct $H^1$ solutions that blow up in finite time with explicit blow-up profiles and blow-up rates. In particular, blowup can occur at any given finite set of points of ${\mathbb R}^N$. The construction involves explicit functions $U$, solutions of the ordinary differential equation $U_t=|U|^\alpha U$. In the simplest case, $U(t,x)=(|x|^k-\alpha t)^{-\frac 1\alpha}$ for $t<0$, $x\in {\mathbb R}^N$. For $k$ sufficiently large, $U$ satisfies $|\Delta U|\ll U_t$ close to the blow-up point $(t,x)=(0,0)$, so that it is a suitable approximate solution of the problem. To construct an actual solution $u$ close to $U$, we use energy estimates and a compactness argument.

Dates et versions

hal-01826927 , version 1 (30-06-2018)

Identifiants

Citer

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schr\"odinger equation with nonlinear source term. Discrete and Continuous Dynamical Systems - Series A, 2019, 39 (2), pp.1171-1183. ⟨10.3934/dcds.2019050⟩. ⟨hal-01826927⟩
90 Consultations
0 Téléchargements

Altmetric

Partager

More