Complementation of the subspace of radial multipliers in the space of Fourier multipliers on $\mathbb{R}^n$ - Archive ouverte HAL
Journal Articles Archiv der Mathematik Year : 2018

Complementation of the subspace of radial multipliers in the space of Fourier multipliers on $\mathbb{R}^n$

Compl\'ementation du sous-espace des multiplicateurs radiaux dans l'espace des multiplicateurs de Fourier sur $\mathbb{R}^n$

Abstract

In this short note, we prove that the subspace of radial multipliers is contractively complemented in the space of Fourier multipliers on the Bochner space $\mathrm{L}^p(\mathbb{R}^n,X)$ where $X$ is a Banach space and where $1 \leq p <\infty$. Moreover, if $X = \mathbb{C}$, then this complementation preserves the positivity of multipliers.
Fichier principal
Vignette du fichier
Projection-radial-13 Submitted to HAL.pdf (282.84 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01826127 , version 1 (29-06-2018)

Identifiers

Cite

Cédric Arhancet, Christoph Kriegler. Complementation of the subspace of radial multipliers in the space of Fourier multipliers on $\mathbb{R}^n$. Archiv der Mathematik, 2018. ⟨hal-01826127⟩
163 View
59 Download

Altmetric

Share

More