Pure $SU(2)$ gauge theory partition function and generalized Bessel kernel - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Pure $SU(2)$ gauge theory partition function and generalized Bessel kernel

P. Gavrylenko
  • Fonction : Auteur

Résumé

We show that the dual partition function of the pure $\mathcal N=2$ $SU(2)$ gauge theory in the self-dual $\Omega$-background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the tau function associated to the general solution of the Painlev\'e III equation of type $D_8$ (radial sine-Gordon equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combinatorial sums over pairs of Young diagrams.

Mots clés

Dates et versions

hal-01823332 , version 1 (26-06-2018)

Identifiants

Citer

P. Gavrylenko, O. Lisovyy. Pure $SU(2)$ gauge theory partition function and generalized Bessel kernel. String Math 2016, Jun 2016, Paris, France. pp.181-208, ⟨10.1090/pspum/098/01727⟩. ⟨hal-01823332⟩
82 Consultations
0 Téléchargements

Altmetric

Partager

More